BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 27741475)

  • 21. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.
    Luangpipat T; Chisti Y
    J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.
    Hultberg M; Jönsson HL; Bergstrand KJ; Carlsson AS
    Bioresour Technol; 2014 May; 159():465-7. PubMed ID: 24718357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.
    Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B
    Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.
    Adamczyk M; Lasek J; Skawińska A
    Appl Biochem Biotechnol; 2016 Aug; 179(7):1248-61. PubMed ID: 27052208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():157-65. PubMed ID: 23186680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO
    Jain D; Ghonse SS; Trivedi T; Fernandes GL; Menezes LD; Damare SR; Mamatha SS; Kumar S; Gupta V
    Bioresour Technol; 2019 Feb; 273():672-676. PubMed ID: 30503579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and optimization of biomass productivity of Chlorella vulgaris using response surface methodology, analysis of variance and machine learning for carbon dioxide capture.
    Janjua MY; Azfar A; Asghar Z; Shehzad Quraishi K
    Bioresour Technol; 2024 May; 400():130687. PubMed ID: 38614148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of vitamin B12 to biogas upgrading and nutrient removal by different microalgae-based technology.
    Xu B; Liu J; Zhao C; Sun S; Zhao Y; Liu J; Xu J; Wu D
    World J Microbiol Biotechnol; 2021 Nov; 37(12):216. PubMed ID: 34762196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Azospirillum brasilense Increases CO
    Choix FJ; López-Cisneros CG; Méndez-Acosta HO
    Microb Ecol; 2018 Aug; 76(2):430-442. PubMed ID: 29327073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photon up-conversion increases biomass yield in Chlorella vulgaris.
    Menon KR; Jose S; Suraishkumar GK
    Biotechnol J; 2014 Dec; 9(12):1547-53. PubMed ID: 25155721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods.
    Guo P; Zhang Y; Zhao Y
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29543784
    [No Abstract]   [Full Text] [Related]  

  • 35. The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism.
    Li Y; Zhang Z; Duan Y; Wang H
    Bioresour Technol; 2019 May; 280():188-198. PubMed ID: 30771574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.
    Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y
    Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.
    Ortiz Montoya EY; Casazza AA; Aliakbarian B; Perego P; Converti A; de Carvalho JC
    Biotechnol Prog; 2014; 30(4):916-22. PubMed ID: 24532479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.
    Sharma AK; Sahoo PK; Singhal S; Joshi G
    Bioresour Technol; 2016 Sep; 216():793-800. PubMed ID: 27318156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.
    Gupta PL; Choi HJ; Pawar RR; Jung SP; Lee SM
    J Environ Manage; 2016 Dec; 184(Pt 3):585-595. PubMed ID: 27789093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.