These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27742445)

  • 1. Macroporous acrylamide phantoms improve prediction of in vivo performance of in situ forming implants.
    Hernandez C; Gawlik N; Goss M; Zhou H; Jeganathan S; Gilbert D; Exner AA
    J Control Release; 2016 Dec; 243():225-231. PubMed ID: 27742445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the Subcutaneous Environment on Phase-Sensitive In Situ-Forming Implant Drug Release, Degradation, and Microstructure.
    Solorio L; Exner AA
    J Pharm Sci; 2015 Dec; 104(12):4322-4328. PubMed ID: 26506522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2018 Feb; 150():95-106. PubMed ID: 29216591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards in vitro - In vivo correlation models for in situ forming drug implants.
    Wang X; Roy M; Wang R; Kwok O; Wang Y; Wang Y; Qin B; Burgess DJ
    J Control Release; 2024 Aug; 372():648-660. PubMed ID: 38936743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of injection site on in situ implant formation and drug release in vivo.
    Patel RB; Solorio L; Wu H; Krupka T; Exner AA
    J Control Release; 2010 Nov; 147(3):350-8. PubMed ID: 20728486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro - in vivo correlation: from theory to applications.
    Emami J
    J Pharm Pharm Sci; 2006; 9(2):169-89. PubMed ID: 16959187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release.
    Jiang Y; Wu Y; Huo Y
    J Biomater Sci Polym Ed; 2015; 26(14):917-30. PubMed ID: 26146984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro release studies of insulin from lipid implants in solution and in a hydrogel matrix mimicking the subcutis.
    Jensen SS; Jensen H; Møller EH; Cornett C; Siepmann F; Siepmann J; Østergaard J
    Eur J Pharm Sci; 2016 Jan; 81():103-12. PubMed ID: 26478185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of PLGA
    Yang S; Hu M; Liu W; Hou N; Yin K; Shen C; Shang Q
    J Biomater Sci Polym Ed; 2021 Jun; 32(8):994-1008. PubMed ID: 33583329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anti-melanoma efficiency of the intratumoral injection of cucurbitacin-loaded sustained release carriers: in situ-forming implants.
    Guo J; Wang J; Cai C; Xu J; Yu H; Xu H; Xing T
    AAPS PharmSciTech; 2015 Aug; 16(4):973-85. PubMed ID: 25609378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI.
    Hopkins KA; Vike N; Li X; Kennedy J; Simmons E; Rispoli J; Solorio L
    J Control Release; 2019 Sep; 309():289-301. PubMed ID: 31323243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel adapter method for in vitro release testing of in situ forming implants.
    Wang X; Bao Q; Suh MS; Kastellorizios M; Wang R; Burgess DJ
    Int J Pharm; 2022 Jun; 621():121777. PubMed ID: 35489601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug release from in situ forming implants and advances in release testing.
    Wang X; Burgess DJ
    Adv Drug Deliv Rev; 2021 Nov; 178():113912. PubMed ID: 34363860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel biopolymers as implant matrix for the delivery of ciprofloxacin: biocompatibility, degradation, and in vitro antibiotic release.
    Fulzele SV; Satturwar PM; Dorle AK
    J Pharm Sci; 2007 Jan; 96(1):132-44. PubMed ID: 16960824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsphere delivery of Risperidone as an alternative to combination therapy.
    D'Souza S; Faraj J; DeLuca P
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):631-9. PubMed ID: 23892159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems.
    Jug M; Hafner A; Lovrić J; Kregar ML; Pepić I; Vanić Ž; Cetina-Čižmek B; Filipović-Grčić J
    J Pharm Biomed Anal; 2018 Jan; 147():350-366. PubMed ID: 28720350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix systems for oral drug delivery: Formulations and drug release.
    Vasvári G; Kalmár J; Veres P; Vecsernyés M; Bácskay I; Fehér P; Ujhelyi Z; Haimhoffer Á; Rusznyák Á; Fenyvesi F; Váradi J
    Drug Discov Today Technol; 2018 Jul; 27():71-80. PubMed ID: 30103866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting in vivo behavior of injectable, in situ-forming drug-delivery systems.
    Hernandez C; Exner AA
    Ther Deliv; 2017 Jul; 8(7):479-483. PubMed ID: 28350230
    [No Abstract]   [Full Text] [Related]  

  • 20. Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model.
    Pandey M; Mohamad N; Amin MC
    Mol Pharm; 2014 Oct; 11(10):3596-608. PubMed ID: 25157890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.