These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27742562)
41. Production of disulfide-bonded proteins in Escherichia coli. Berkmen M Protein Expr Purif; 2012 Mar; 82(1):240-51. PubMed ID: 22085722 [TBL] [Abstract][Full Text] [Related]
42. A Generic Protocol for Purifying Disulfide-Bonded Domains and Random Protein Fragments Using Fusion Proteins with SUMO3 and Cleavage by SenP2 Protease. Besir H Methods Mol Biol; 2017; 1586():141-154. PubMed ID: 28470603 [TBL] [Abstract][Full Text] [Related]
43. Functional Siglec lectin domains from soluble expression in the cytoplasm of Escherichia coli. Pröpster JM; Yang F; Ernst B; Allain FH; Schubert M Protein Expr Purif; 2015 May; 109():14-22. PubMed ID: 25623398 [TBL] [Abstract][Full Text] [Related]
44. Human carbonic anhydrase IV: in vitro activation and purification of disulfide-bonded enzyme following expression in Escherichia coli. Waheed A; Pham T; Won M; Okuyama T; Sly WS Protein Expr Purif; 1997 Mar; 9(2):279-87. PubMed ID: 9056493 [TBL] [Abstract][Full Text] [Related]
45. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Bessette PH; Aslund F; Beckwith J; Georgiou G Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13703-8. PubMed ID: 10570136 [TBL] [Abstract][Full Text] [Related]
46. Production of a soluble disulfide bond-linked TCR in the cytoplasm of Escherichia coli trxB gor mutants. Liddy N; Molloy PE; Bennett AD; Boulter JM; Jakobsen BK; Li Y Mol Biotechnol; 2010 Jun; 45(2):140-9. PubMed ID: 20143183 [TBL] [Abstract][Full Text] [Related]
47. Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning. Steinberger P; Szekeres A; Wille S; Stöckl J; Selenko N; Prager E; Staffler G; Madic O; Stockinger H; Knapp W J Leukoc Biol; 2002 Jan; 71(1):133-40. PubMed ID: 11781389 [TBL] [Abstract][Full Text] [Related]
48. CD93/AA4.1: a novel regulator of inflammation in murine focal cerebral ischemia. Harhausen D; Prinz V; Ziegler G; Gertz K; Endres M; Lehrach H; Gasque P; Botto M; Stahel PF; Dirnagl U; Nietfeld W; Trendelenburg G J Immunol; 2010 Jun; 184(11):6407-17. PubMed ID: 20439917 [TBL] [Abstract][Full Text] [Related]
49. A periplasmic reducing system protects single cysteine residues from oxidation. Depuydt M; Leonard SE; Vertommen D; Denoncin K; Morsomme P; Wahni K; Messens J; Carroll KS; Collet JF Science; 2009 Nov; 326(5956):1109-11. PubMed ID: 19965429 [TBL] [Abstract][Full Text] [Related]
50. Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. Kurokawa Y; Yanagi H; Yura T J Biol Chem; 2001 Apr; 276(17):14393-9. PubMed ID: 11279016 [TBL] [Abstract][Full Text] [Related]
51. Soluble CD93 induces differentiation of monocytes and enhances TLR responses. Jeon JW; Jung JG; Shin EC; Choi HI; Kim HY; Cho ML; Kim SW; Jang YS; Sohn MH; Moon JH; Cho YH; Hoe KL; Seo YS; Park YW J Immunol; 2010 Oct; 185(8):4921-7. PubMed ID: 20861352 [TBL] [Abstract][Full Text] [Related]
52. Tuned Escherichia coli as a host for the expression of disulfide-rich proteins. Salinas G; Pellizza L; Margenat M; Fló M; Fernández C Biotechnol J; 2011 Jun; 6(6):686-99. PubMed ID: 21567960 [TBL] [Abstract][Full Text] [Related]
53. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Joly JC; Leung WS; Swartz JR Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2773-7. PubMed ID: 9501165 [TBL] [Abstract][Full Text] [Related]
54. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. Stewart EJ; Aslund F; Beckwith J EMBO J; 1998 Oct; 17(19):5543-50. PubMed ID: 9755155 [TBL] [Abstract][Full Text] [Related]
55. Overproduction of anti-Tn antibody MLS128 single-chain Fv fragment in Escherichia coli cytoplasm using a novel pCold-PDI vector. Subedi GP; Satoh T; Hanashima S; Ikeda A; Nakada H; Sato R; Mizuno M; Yuasa N; Fujita-Yamaguchi Y; Yamaguchi Y Protein Expr Purif; 2012 Mar; 82(1):197-204. PubMed ID: 22245752 [TBL] [Abstract][Full Text] [Related]
56. Production of Extracellular Matrix Proteins in the Cytoplasm of Sohail AA; Gaikwad M; Khadka P; Saaranen MJ; Ruddock LW Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973001 [No Abstract] [Full Text] [Related]
57. Disulfide-compatible phage-assisted continuous evolution in the periplasmic space. Morrison MS; Wang T; Raguram A; Hemez C; Liu DR Nat Commun; 2021 Oct; 12(1):5959. PubMed ID: 34645844 [TBL] [Abstract][Full Text] [Related]
58. Interchangeable modules in bacterial thiol-disulfide exchange pathways. Kouwen TR; van Dijl JM Trends Microbiol; 2009 Jan; 17(1):6-12. PubMed ID: 19059781 [TBL] [Abstract][Full Text] [Related]
59. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein. Okuda A; Matsusaki M; Masuda T; Urade R FEBS J; 2017 Feb; 284(3):414-428. PubMed ID: 27960051 [TBL] [Abstract][Full Text] [Related]
60. Production of Disulfide-Bonded Proteins in Escherichia coli. Ke N; Berkmen M Curr Protoc Mol Biol; 2014 Oct; 108():16.1B.1-16.1B.21. PubMed ID: 25271713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]