These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27742562)
61. Making and breaking disulfide bonds. Raina S; Missiakas D Annu Rev Microbiol; 1997; 51():179-202. PubMed ID: 9343348 [TBL] [Abstract][Full Text] [Related]
62. High-level expression of a soluble and functional fibronectin type II domain from MMP-2 in the Escherichia coli cytoplasm for solution NMR studies. Peisley AA; Gooley PR Protein Expr Purif; 2007 May; 53(1):124-31. PubMed ID: 17251038 [TBL] [Abstract][Full Text] [Related]
63. Advanced genetic strategies for recombinant protein expression in Escherichia coli. Sørensen HP; Mortensen KK J Biotechnol; 2005 Jan; 115(2):113-28. PubMed ID: 15607230 [TBL] [Abstract][Full Text] [Related]
64. Mutations of the membrane-bound disulfide reductase DsbD that block electron transfer steps from cytoplasm to periplasm in Escherichia coli. Cho SH; Beckwith J J Bacteriol; 2006 Jul; 188(14):5066-76. PubMed ID: 16816179 [TBL] [Abstract][Full Text] [Related]
66. Cytoplasmic Production of Nanobodies and Nanobody-Based Reagents by Co-Expression of Sulfhydryl Oxidase and DsbC Isomerase. de Marco A Methods Mol Biol; 2022; 2446():145-157. PubMed ID: 35157272 [TBL] [Abstract][Full Text] [Related]
67. Refolding and characterization of the functional ligand-binding domain of human lectin-like oxidized LDL receptor. Xie Q; Matsunaga S; Shi X; Ogawa S; Niimi S; Wen Z; Tokuyasu K; Machida S Protein Expr Purif; 2003 Nov; 32(1):68-74. PubMed ID: 14680941 [TBL] [Abstract][Full Text] [Related]
68. Disulfide bond formation in periplasm of Escherichia coli. Katzen F; Beckwith J Methods Enzymol; 2002; 348():54-66. PubMed ID: 11885294 [No Abstract] [Full Text] [Related]
69. Enzymatic basis of the Fc-selective intra-chain disulfide reduction and free thiol content variability in an antibody produced in Escherichia coli. Baginski TK; Veeravalli K; McKenna R; Williams C; Wong K; Tsai C; Hewitt D; Mani K; Laird MW Microb Cell Fact; 2022 Aug; 21(1):167. PubMed ID: 35986313 [TBL] [Abstract][Full Text] [Related]
70. The essential cell division protein FtsN contains a critical disulfide bond in a non-essential domain. Meehan BM; Landeta C; Boyd D; Beckwith J Mol Microbiol; 2017 Feb; 103(3):413-422. PubMed ID: 27785850 [TBL] [Abstract][Full Text] [Related]
71. Soluble expression of recombinant midgut zymogen (native propeptide) proteases from the Aedes aegypti Mosquito Utilizing E. coli as a host. Nguyen JT; Fong J; Fong D; Fong T; Lucero RM; Gallimore JM; Burata OE; Parungao K; Rascón AA BMC Biochem; 2018 Dec; 19(1):12. PubMed ID: 30563449 [TBL] [Abstract][Full Text] [Related]
72. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. Klint JK; Senff S; Saez NJ; Seshadri R; Lau HY; Bende NS; Undheim EA; Rash LD; Mobli M; King GF PLoS One; 2013; 8(5):e63865. PubMed ID: 23667680 [TBL] [Abstract][Full Text] [Related]
73. Group XIV C-type lectins: emerging targets in tumor angiogenesis. Yee EJ; Vigil I; Sun Y; Torphy RJ; Schulick RD; Zhu Y Angiogenesis; 2024 May; 27(2):173-192. PubMed ID: 38468017 [TBL] [Abstract][Full Text] [Related]
74. Crosstalk between CD93, C1q and GIPC in the Regulation of Pneumococcal Meningitis Inflammation. Qiao N; Zhang J; Zhang Y; Liu X Ann Clin Lab Sci; 2022 Jul; 52(4):634-641. PubMed ID: 36197773 [TBL] [Abstract][Full Text] [Related]
75. CD93 promotes acute myeloid leukemia development and is a potential therapeutic target. Jia J; Liu B; Wang D; Wang X; Song L; Ren Y; Guo Z; Ma K; Cui C Exp Cell Res; 2022 Nov; 420(2):113361. PubMed ID: 36152731 [TBL] [Abstract][Full Text] [Related]
76. Synthesis of proteins with disulfide bonds in E. coli using defined culture media. Fernández-Tornero C; Ramón A; Navarro ML; Varela J; Giménez-Gallego G Biotechniques; 2002 Jun; 32(6):1238, 1240, 1242. PubMed ID: 12074150 [No Abstract] [Full Text] [Related]
77. CD93 interacts with the PDZ domain-containing adaptor protein GIPC: implications in the modulation of phagocytosis. Bohlson SS; Zhang M; Ortiz CE; Tenner AJ J Leukoc Biol; 2005 Jan; 77(1):80-9. PubMed ID: 15459234 [TBL] [Abstract][Full Text] [Related]
78. A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli. Gibisch M; Müller M; Tauer C; Albrecht B; Hahn R; Cserjan-Puschmann M; Striedner G Microb Cell Fact; 2024 Jun; 23(1):166. PubMed ID: 38840157 [TBL] [Abstract][Full Text] [Related]
79. Psoriasis and Pro-angiogenetic Factor CD93: Gene Expression and Association with Gene Polymorphism Suggests a Role in Disease Pathogenesis. Duvetorp A; Slind Olsen R; Skarstedt M; Söderman J; Seifert O Acta Derm Venereol; 2017 Aug; 97(8):916-921. PubMed ID: 28421233 [TBL] [Abstract][Full Text] [Related]
80. Human antibodies targeting the C-type lectin-like domain of the tumor endothelial cell marker clec14a regulate angiogenic properties in vitro. Ki MK; Jeoung MH; Choi JR; Rho SS; Kwon YG; Shim H; Chung J; Hong HJ; Song BD; Lee S Oncogene; 2013 Nov; 32(48):5449-57. PubMed ID: 23644659 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]