These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
694 related articles for article (PubMed ID: 27742661)
21. Empirical evaluation of methods for Dida F; Yi G PeerJ Comput Sci; 2021; 7():e636. PubMed ID: 34307867 [TBL] [Abstract][Full Text] [Related]
22. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution. Li M; Liao Z; He Y; Wang J; Luo J; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460 [TBL] [Abstract][Full Text] [Related]
23. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Bankevich A; Bzikadze AV; Kolmogorov M; Antipov D; Pevzner PA Nat Biotechnol; 2022 Jul; 40(7):1075-1081. PubMed ID: 35228706 [TBL] [Abstract][Full Text] [Related]
24. RMI-DBG algorithm: A more agile iterative de Bruijn graph algorithm in short read genome assembly. Hosseini ZZ; Rahimi SK; Forouzan E; Baraani A J Bioinform Comput Biol; 2021 Apr; 19(2):2150005. PubMed ID: 33866959 [TBL] [Abstract][Full Text] [Related]
25. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix. Yoon S; Kim D; Kang K; Park WJ BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798 [TBL] [Abstract][Full Text] [Related]
26. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers. Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285 [TBL] [Abstract][Full Text] [Related]
27. The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing. Wee Y; Bhyan SB; Liu Y; Lu J; Li X; Zhao M Brief Funct Genomics; 2019 Feb; 18(1):1-12. PubMed ID: 30462154 [TBL] [Abstract][Full Text] [Related]
28. SAGE: String-overlap Assembly of GEnomes. Ilie L; Haider B; Molnar M; Solis-Oba R BMC Bioinformatics; 2014 Sep; 15(1):302. PubMed ID: 25225118 [TBL] [Abstract][Full Text] [Related]
29. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application. Kuśmirek W; Nowak R BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513 [TBL] [Abstract][Full Text] [Related]
30. The complex task of choosing a de novo assembly: lessons from fungal genomes. Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360 [TBL] [Abstract][Full Text] [Related]
31. Gossamer--a resource-efficient de novo assembler. Conway T; Wazny J; Bromage A; Zobel J; Beresford-Smith B Bioinformatics; 2012 Jul; 28(14):1937-8. PubMed ID: 22611131 [TBL] [Abstract][Full Text] [Related]
32. Detection of simple and complex de novo mutations with multiple reference sequences. Garimella KV; Iqbal Z; Krause MA; Campino S; Kekre M; Drury E; Kwiatkowski D; Sá JM; Wellems TE; McVean G Genome Res; 2020 Aug; 30(8):1154-1169. PubMed ID: 32817236 [TBL] [Abstract][Full Text] [Related]
33. Benchmarking and Assessment of Eight Gupta AK; Kumar M OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429 [TBL] [Abstract][Full Text] [Related]
34. Assembly of long, error-prone reads using repeat graphs. Kolmogorov M; Yuan J; Lin Y; Pevzner PA Nat Biotechnol; 2019 May; 37(5):540-546. PubMed ID: 30936562 [TBL] [Abstract][Full Text] [Related]
35. On the representation of de Bruijn graphs. Chikhi R; Limasset A; Jackman S; Simpson JT; Medvedev P J Comput Biol; 2015 May; 22(5):336-52. PubMed ID: 25629448 [TBL] [Abstract][Full Text] [Related]
36. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs. Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174 [TBL] [Abstract][Full Text] [Related]
37. BASE: a practical de novo assembler for large genomes using long NGS reads. Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129 [TBL] [Abstract][Full Text] [Related]
38. Coverage-preserving sparsification of overlap graphs for long-read assembly. Jain C Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36892439 [TBL] [Abstract][Full Text] [Related]