These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
694 related articles for article (PubMed ID: 27742661)
41. NovoGraph: Human genome graph construction from multiple long-read Biederstedt E; Oliver JC; Hansen NF; Jajoo A; Dunn N; Olson A; Busby B; Dilthey AT F1000Res; 2018; 7():1391. PubMed ID: 30613392 [TBL] [Abstract][Full Text] [Related]
42. Integrating long-range connectivity information into de Bruijn graphs. Turner I; Garimella KV; Iqbal Z; McVean G Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215 [TBL] [Abstract][Full Text] [Related]
43. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies. Ye C; Hill CM; Wu S; Ruan J; Ma ZS Sci Rep; 2016 Aug; 6():31900. PubMed ID: 27573208 [TBL] [Abstract][Full Text] [Related]
44. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads. Liao X; Gao X; Zhang X; Wu FX; Wang J BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827 [TBL] [Abstract][Full Text] [Related]
45. Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi. Margos G; Hepner S; Mang C; Marosevic D; Reynolds SE; Krebs S; Sing A; Derdakova M; Reiter MA; Fingerle V BMC Genomics; 2017 May; 18(1):422. PubMed ID: 28558786 [TBL] [Abstract][Full Text] [Related]
46. LMAS: evaluating metagenomic short de novo assembly methods through defined communities. Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M Gigascience; 2022 Dec; 12():. PubMed ID: 36576131 [TBL] [Abstract][Full Text] [Related]
47. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Wang O; Chin R; Cheng X; Wu MKY; Mao Q; Tang J; Sun Y; Anderson E; Lam HK; Chen D; Zhou Y; Wang L; Fan F; Zou Y; Xie Y; Zhang RY; Drmanac S; Nguyen D; Xu C; Villarosa C; Gablenz S; Barua N; Nguyen S; Tian W; Liu JS; Wang J; Liu X; Qi X; Chen A; Wang H; Dong Y; Zhang W; Alexeev A; Yang H; Wang J; Kristiansen K; Xu X; Drmanac R; Peters BA Genome Res; 2019 May; 29(5):798-808. PubMed ID: 30940689 [TBL] [Abstract][Full Text] [Related]
48. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology. Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808 [TBL] [Abstract][Full Text] [Related]
49. Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools. Kisand V; Lettieri T BMC Genomics; 2013 Apr; 14():211. PubMed ID: 23547799 [TBL] [Abstract][Full Text] [Related]
50. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs. Limasset A; Flot JF; Peterlongo P Bioinformatics; 2020 Mar; 36(5):1374-1381. PubMed ID: 30785192 [TBL] [Abstract][Full Text] [Related]
51. RepLong: de novo repeat identification using long read sequencing data. Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180 [TBL] [Abstract][Full Text] [Related]
52. Next-generation sequencing and large genome assemblies. Henson J; Tischler G; Ning Z Pharmacogenomics; 2012 Jun; 13(8):901-15. PubMed ID: 22676195 [TBL] [Abstract][Full Text] [Related]
54. Tigmint: correcting assembly errors using linked reads from large molecules. Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597 [TBL] [Abstract][Full Text] [Related]
55. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers. Jünemann S; Prior K; Albersmeier A; Albaum S; Kalinowski J; Goesmann A; Stoye J; Harmsen D PLoS One; 2014; 9(9):e107014. PubMed ID: 25198770 [TBL] [Abstract][Full Text] [Related]
56. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights. Warnke-Sommer J; Ali H BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001 [TBL] [Abstract][Full Text] [Related]
57. Hybrid De Novo Genome Assembly for the Generation of Complete Genomes of Urinary Bacteria using Short- and Long-read Sequencing Technologies. Sharon BM; Hulyalkar NV; Nguyen VH; Zimmern PE; Palmer KL; De Nisco NJ J Vis Exp; 2021 Aug; (174):. PubMed ID: 34487123 [TBL] [Abstract][Full Text] [Related]
58. Genome sequence assembly algorithms and misassembly identification methods. Meng Y; Lei Y; Gao J; Liu Y; Ma E; Ding Y; Bian Y; Zu H; Dong Y; Zhu X Mol Biol Rep; 2022 Nov; 49(11):11133-11148. PubMed ID: 36151399 [TBL] [Abstract][Full Text] [Related]
59. Efficient construction of an assembly string graph using the FM-index. Simpson JT; Durbin R Bioinformatics; 2010 Jun; 26(12):i367-73. PubMed ID: 20529929 [TBL] [Abstract][Full Text] [Related]
60. Compression of next-generation sequencing reads aided by highly efficient de novo assembly. Jones DC; Ruzzo WL; Peng X; Katze MG Nucleic Acids Res; 2012 Dec; 40(22):e171. PubMed ID: 22904078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]