These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27742711)

  • 61. Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus.
    Moroni F; Nobili L; De Carli F; Massimini M; Francione S; Marzano C; Proserpio P; Cipolli C; De Gennaro L; Ferrara M
    Neuroimage; 2012 Mar; 60(1):497-504. PubMed ID: 22178807
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Waking-sleep modulation of paroxysmal activities induced by partial cortical deafferentation.
    Nita DA; Cissé Y; Timofeev I; Steriade M
    Cereb Cortex; 2007 Feb; 17(2):272-83. PubMed ID: 16495431
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Developmental changes in cortical sensory processing during wakefulness and sleep.
    Taga G; Watanabe H; Homae F
    Neuroimage; 2018 Sep; 178():519-530. PubMed ID: 29860079
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dissociated wake-like and sleep-like electro-cortical activity during sleep.
    Nobili L; Ferrara M; Moroni F; De Gennaro L; Russo GL; Campus C; Cardinale F; De Carli F
    Neuroimage; 2011 Sep; 58(2):612-9. PubMed ID: 21718789
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies.
    Massimini M; Ferrarelli F; Sarasso S; Tononi G
    Arch Ital Biol; 2012; 150(2-3):44-55. PubMed ID: 23165870
    [TBL] [Abstract][Full Text] [Related]  

  • 66. How we fall asleep: regional and temporal differences in electroencephalographic synchronization at sleep onset.
    Marzano C; Moroni F; Gorgoni M; Nobili L; Ferrara M; De Gennaro L
    Sleep Med; 2013 Nov; 14(11):1112-22. PubMed ID: 24051119
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep.
    Eschenko O; Magri C; Panzeri S; Sara SJ
    Cereb Cortex; 2012 Feb; 22(2):426-35. PubMed ID: 21670101
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Local functional state differences between rat cortical columns.
    Rector DM; Topchiy IA; Carter KM; Rojas MJ
    Brain Res; 2005 Jun; 1047(1):45-55. PubMed ID: 15882842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice.
    Mohajerani MH; McVea DA; Fingas M; Murphy TH
    J Neurosci; 2010 Mar; 30(10):3745-51. PubMed ID: 20220008
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Statistical, spectral and non-linear analysis of the heart rate variability during wakefulness and sleep.
    Brando V; Castro-Zaballa S; Falconi A; Torterolo P; Migliaro ER
    Arch Ital Biol; 2014 Mar; 152(1):32-46. PubMed ID: 25181595
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Burst and tonic response modes in thalamic neurons during sleep and wakefulness.
    Weyand TG; Boudreaux M; Guido W
    J Neurophysiol; 2001 Mar; 85(3):1107-18. PubMed ID: 11247981
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Low-frequency oscillations of cortical oxidative metabolism in waking and sleep.
    Vern BA; Schuette WH; Leheta B; Juel VC; Radulovacki M
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):215-26. PubMed ID: 2830291
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The microstructure of active and quiet sleep as cortical delta activity emerges in infant rats.
    Seelke AM; Blumberg MS
    Sleep; 2008 May; 31(5):691-9. PubMed ID: 18517038
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Increased cortical involvement and synchronization during CAP A1 slow waves.
    Ujma PP; Halász P; Simor P; Fabó D; Ferri R
    Brain Struct Funct; 2018 Nov; 223(8):3531-3542. PubMed ID: 29951916
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Cortical States of Wakefulness.
    Poulet JFA; Crochet S
    Front Syst Neurosci; 2018; 12():64. PubMed ID: 30670952
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-night cortico-basal recordings reveal mechanisms of NREM slow wave suppression and spontaneous awakenings at high-temporal resolution in Parkinson's disease.
    Anjum MF; Smyth C; Dijk DJ; Starr P; Denison T; Little S
    Res Sq; 2023 Nov; ():. PubMed ID: 37986864
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Intracranial high-γ connectivity distinguishes wakefulness from sleep.
    Mikulan E; Hesse E; Sedeño L; Bekinschtein T; Sigman M; García MDC; Silva W; Ciraolo C; García AM; Ibáñez A
    Neuroimage; 2018 Apr; 169():265-277. PubMed ID: 29225064
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states.
    Allegrini P; Paradisi P; Menicucci D; Laurino M; Piarulli A; Gemignani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032808. PubMed ID: 26465529
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Disrupted neural tracking of sound localization during non-rapid eye movement sleep.
    Wang Y; Lu L; Zou G; Zheng L; Qin L; Zou Q; Gao JH
    Neuroimage; 2022 Oct; 260():119490. PubMed ID: 35853543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.