These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27742715)

  • 41. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense.
    Ramírez-Mata A; López-Lara LI; Xiqui-Vázquez ML; Jijón-Moreno S; Romero-Osorio A; Baca BE
    Res Microbiol; 2016 Apr; 167(3):190-201. PubMed ID: 26708984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria.
    Johansen JE; Binnerup SJ; Lejbølle KB; Mascher F; Sørensen J; Keel C
    J Appl Microbiol; 2002; 93(6):1065-74. PubMed ID: 12452964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
    Powers MJ; Sanabria-Valentín E; Bowers AA; Shank EA
    J Bacteriol; 2015 Jul; 197(13):2129-2138. PubMed ID: 25825426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization and application of a strain-specific monoclonal antibody against the rhizosphere bacterium Azospirillum brasilense Wa5.
    Schloter M; Bode W; Hartmann A
    Hybridoma; 1997 Apr; 16(2):183-7. PubMed ID: 9145321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrophysical characteristics of Azospirillum brasilense Sp245 during interaction with antibodies to various cell surface epitopes.
    Guliy OI; Matora LY; Burygin GL; Dykman LA; Ostudin NA; Bunin VD; Ignatov VV; Ignatov OV
    Anal Biochem; 2007 Nov; 370(2):201-5. PubMed ID: 17723223
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Restoration of polar-flagellum motility and biofilm-forming capacity in the mmsB1 mutant of the alphaproteobacterium Azospirillum brasilense Sp245 points to a new role for a homologue of 3-hydroxyisobutyrate dehydrogenase.
    Shelud'ko AV; Filip'echeva YA; Telesheva EM; Yevstigneyeva SS; Petrova LP; Katsy EI
    Can J Microbiol; 2019 Feb; 65(2):144-154. PubMed ID: 30336067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].
    Kovtunov EA; Shelud'ko AV; Chernyshova MP; Petrova LP; Katsy EI
    Genetika; 2013 Nov; 49(11):1270-5. PubMed ID: 25470927
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The use of fragments of the 85- and 120-MDa plasmids of Azospirillum brasilense Sp245 to study the plasmid rearrangement in this bacterium and to search for homologous sequences in plasmids of Azospirillum brasilense Sp7].
    Katsy EI; Borisov IV; Petrova LP; Matora LIu
    Genetika; 2002 Feb; 38(2):182-9. PubMed ID: 11898609
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense].
    Kushneruk MA; Tugarova AV; Il'chukova AV; Slavkina EA; Starichkova NI; Bogatyrev VA; Antoniuk LP
    Mikrobiologiia; 2013; 82(5):563-70. PubMed ID: 25509394
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of biocontrol agents Pseudomonas fluorescens CHA0 and its genetically modified derivatives on the diversity of culturable fungi in the rhizosphere of mungbean.
    Shaukat SS; Siddiqui IA
    J Appl Microbiol; 2003; 95(5):1039-48. PubMed ID: 14633033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].
    Kupriashina MA; Vetchinkina EP; Burov AM; Ponomareva EG; Nikitina VE
    Mikrobiologiia; 2014; 83(1):41-8. PubMed ID: 25423733
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mucoid mutants of the biocontrol strain pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots.
    Bianciotto V; Andreotti S; Balestrini R; Bonfante P; Perotto S
    Mol Plant Microbe Interact; 2001 Feb; 14(2):255-60. PubMed ID: 11204790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The nature of the interaction Azospirillum-Arabidopsis determine the molecular and morphological changes in root and plant growth promotion.
    Méndez-Gómez M; Barrera-Ortiz S; Castro-Mercado E; López-Bucio J; García-Pineda E
    Protoplasma; 2021 Jan; 258(1):179-189. PubMed ID: 33009649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245.
    Pothier JF; Prigent-Combaret C; Haurat J; Moënne-Loccoz Y; Wisniewski-Dyé F
    Mol Plant Microbe Interact; 2008 Jun; 21(6):831-42. PubMed ID: 18624646
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium
    Kamnev AA; Dyatlova YA; Kenzhegulov OA; Fedonenko YP; Evstigneeva SS; Tugarova AV
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled.
    Ona O; Van Impe J; Prinsen E; Vanderleyden J
    FEMS Microbiol Lett; 2005 May; 246(1):125-32. PubMed ID: 15869971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants.
    Flury P; Vesga P; Dominguez-Ferreras A; Tinguely C; Ullrich CI; Kleespies RG; Keel C; Maurhofer M
    ISME J; 2019 Apr; 13(4):860-872. PubMed ID: 30504899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense.
    Jijón-Moreno S; Marcos-Jiménez C; Pedraza RO; Ramírez-Mata A; de Salamone IG; Fernández-Scavino A; Vásquez-Hernández CA; Soto-Urzúa L; Baca BE
    Antonie Van Leeuwenhoek; 2015 Jun; 107(6):1501-17. PubMed ID: 25842039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the ability to form biofilms by plant-associated Pseudomonas species.
    Ueda A; Saneoka H
    Curr Microbiol; 2015 Apr; 70(4):506-13. PubMed ID: 25487118
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense].
    Muliukin AL; Suzina NE; Pogorelova AIu; Antoniuk LP; Duda VI; El'-Registan GI
    Mikrobiologiia; 2009; 78(1):42-51. PubMed ID: 19334596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.