BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 27742803)

  • 1. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling.
    McGlory C; Devries MC; Phillips SM
    J Appl Physiol (1985); 2017 Mar; 122(3):541-548. PubMed ID: 27742803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise.
    Figueiredo VC
    Am J Physiol Regul Integr Comp Physiol; 2019 Nov; 317(5):R709-R718. PubMed ID: 31508978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanotransduction and the regulation of protein synthesis in skeletal muscle.
    Hornberger TA; Esser KA
    Proc Nutr Soc; 2004 May; 63(2):331-5. PubMed ID: 15294051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of mTOR by amino acids and resistance exercise in skeletal muscle.
    Deldicque L; Theisen D; Francaux M
    Eur J Appl Physiol; 2005 May; 94(1-2):1-10. PubMed ID: 15702344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why muscle stops building when it's working.
    Rennie MJ
    J Physiol; 2005 Nov; 569(Pt 1):3. PubMed ID: 16210346
    [No Abstract]   [Full Text] [Related]  

  • 7. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences.
    Burd NA; Tang JE; Moore DR; Phillips SM
    J Appl Physiol (1985); 2009 May; 106(5):1692-701. PubMed ID: 19036897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of skeletal muscle mitochondria in response to contractile activity.
    Adhihetty PJ; Irrcher I; Joseph AM; Ljubicic V; Hood DA
    Exp Physiol; 2003 Jan; 88(1):99-107. PubMed ID: 12525859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks.
    Beiter T; Hoene M; Prenzler F; Mooren FC; Steinacker JM; Weigert C; Nieß AM; Munz B
    Exerc Immunol Rev; 2015; 21():42-57. PubMed ID: 25826388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males.
    McKendry J; Pérez-López A; McLeod M; Luo D; Dent JR; Smeuninx B; Yu J; Taylor AE; Philp A; Breen L
    Exp Physiol; 2016 Jul; 101(7):866-82. PubMed ID: 27126459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise type and volume alter signaling pathways regulating skeletal muscle glucose uptake and protein synthesis.
    Ahtiainen JP; Walker S; Silvennoinen M; Kyröläinen H; Nindl BC; Häkkinen K; Nyman K; Selänne H; Hulmi JJ
    Eur J Appl Physiol; 2015 Sep; 115(9):1835-45. PubMed ID: 25861013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training.
    Trommelen J; van Loon LJ
    Nutrients; 2016 Nov; 8(12):. PubMed ID: 27916799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy.
    Rahbek SK; Farup J; Møller AB; Vendelbo MH; Holm L; Jessen N; Vissing K
    Amino Acids; 2014 Oct; 46(10):2377-92. PubMed ID: 25005782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling.
    Bolster DR; Jefferson LS; Kimball SR
    Proc Nutr Soc; 2004 May; 63(2):351-6. PubMed ID: 15294054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational control: implications for skeletal muscle hypertrophy.
    Nader GA; Hornberger TA; Esser KA
    Clin Orthop Relat Res; 2002 Oct; (403 Suppl):S178-87. PubMed ID: 12394467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.
    Gonzalez AM; Hoffman JR; Stout JR; Fukuda DH; Willoughby DS
    Sports Med; 2016 May; 46(5):671-85. PubMed ID: 26666743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The science of muscle hypertrophy: making dietary protein count.
    Phillips SM
    Proc Nutr Soc; 2011 Feb; 70(1):100-3. PubMed ID: 21092368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy.
    Figueiredo VC; Caldow MK; Massie V; Markworth JF; Cameron-Smith D; Blazevich AJ
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(1):E72-83. PubMed ID: 25968575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone.
    West DW; Phillips SM
    Phys Sportsmed; 2010 Oct; 38(3):97-104. PubMed ID: 20959702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.