These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27742896)

  • 1. Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito Anopheles gambiae.
    Chintapalli RT; Hillyer JF
    J Exp Biol; 2016 Dec; 219(Pt 24):3945-3951. PubMed ID: 27742896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality.
    Pass G
    Arthropod Struct Dev; 2018 Jul; 47(4):391-407. PubMed ID: 29859244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemolymph circulation in insect sensory appendages: functional mechanics of antennal accessory pulsatile organs (auxiliary hearts) in the mosquito Anopheles gambiae.
    Boppana S; Hillyer JF
    J Exp Biol; 2014 Sep; 217(Pt 17):3006-14. PubMed ID: 24948635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex hemolymph circulation patterns in grasshopper wings.
    Salcedo MK; Jun BH; Socha JJ; Pierce NE; Vlachos PP; Combes SA
    Commun Biol; 2023 Mar; 6(1):313. PubMed ID: 36959465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CCAP and FMRFamide-like peptides accelerate the contraction rate of the antennal accessory pulsatile organs (auxiliary hearts) of mosquitoes.
    Suggs JM; Jones TH; Murphree SC; Hillyer JF
    J Exp Biol; 2016 Aug; 219(Pt 15):2388-95. PubMed ID: 27247317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contraction of the ventral abdomen potentiates extracardiac retrograde hemolymph propulsion in the mosquito hemocoel.
    Andereck JW; King JG; Hillyer JF
    PLoS One; 2010 Sep; 5(9):e12943. PubMed ID: 20886066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulation in Insect Wings.
    Salcedo MK; Socha JJ
    Integr Comp Biol; 2020 Nov; 60(5):1208-1220. PubMed ID: 32870980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport.
    Glenn JD; King JG; Hillyer JF
    J Exp Biol; 2010 Feb; 213(4):541-50. PubMed ID: 20118304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae.
    League GP; Onuh OC; Hillyer JF
    J Exp Biol; 2015 Feb; 218(Pt 3):370-80. PubMed ID: 25524976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accessory pulsatile organs: evolutionary innovations in insects.
    Pass G
    Annu Rev Entomol; 2000; 45():495-518. PubMed ID: 10761587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record.
    Kukalova-Peck J
    J Morphol; 1978 Apr; 156(1):53-125. PubMed ID: 30231597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The damping and structural properties of dragonfly and damselfly wings during dynamic movement.
    Lietz C; Schaber CF; Gorb SN; Rajabi H
    Commun Biol; 2021 Jun; 4(1):737. PubMed ID: 34131288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new torsion control mechanism induced by blood circulation in dragonfly wings.
    Hou D; Yin Y; Zhong Z; Zhao H
    Bioinspir Biomim; 2015 Feb; 10(1):016020. PubMed ID: 25656051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional characterization of the contractile aorta and associated hemocytes of the mosquito
    Sigle LT; Hillyer JF
    J Exp Biol; 2018 Jun; 221(Pt 12):. PubMed ID: 29724775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient use of hemolymph for hydraulic wing expansion in cicadas.
    Salcedo MK; Ellis TE; Sáenz ÁS; Lu J; Worrell T; Madigan ML; Socha JJ
    Sci Rep; 2023 Apr; 13(1):6298. PubMed ID: 37072416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hydrodynamic pressure and vein strength on the super-elasticity of honeybee wings.
    Zhao J; Xu M; Liang Y; Yan S; Niu W
    J Insect Physiol; 2018; 109():100-106. PubMed ID: 30006106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin.
    Appel E; Heepe L; Lin CP; Gorb SN
    J Anat; 2015 Oct; 227(4):561-82. PubMed ID: 26352411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing flexibility improves bumblebee flight stability.
    Mistick EA; Mountcastle AM; Combes SA
    J Exp Biol; 2016 Nov; 219(Pt 21):3384-3390. PubMed ID: 27638618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple developmental model recapitulates complex insect wing venation patterns.
    Hoffmann J; Donoughe S; Li K; Salcedo MK; Rycroft CH
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9905-9910. PubMed ID: 30224459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.