BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 27742910)

  • 1. CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter.
    Wei Y; Qiu Y; Chen Y; Liu G; Zhang Y; Xu L; Ding Q
    RNA; 2017 Jan; 23(1):1-5. PubMed ID: 27742910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants.
    Tang X; Zhong Z; Ren Q; Liu B; Zhang Y
    Methods Mol Biol; 2019; 1917():75-82. PubMed ID: 30610629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger.
    Song L; Ouedraogo JP; Kolbusz M; Nguyen TTM; Tsang A
    PLoS One; 2018; 13(8):e0202868. PubMed ID: 30142205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing.
    Xie K; Yang Y
    Methods Mol Biol; 2019; 1917():63-73. PubMed ID: 30610628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters.
    Mefferd AL; Kornepati AV; Bogerd HP; Kennedy EM; Cullen BR
    RNA; 2015 Sep; 21(9):1683-9. PubMed ID: 26187160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions.
    Abdel-Mawgoud AM; Stephanopoulos G
    Metab Eng; 2020 Nov; 62():106-115. PubMed ID: 32758536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium.
    Sekine R; Kawata T; Muramoto T
    Sci Rep; 2018 May; 8(1):8471. PubMed ID: 29855514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica.
    Schwartz CM; Hussain MS; Blenner M; Wheeldon I
    ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Characterization of Novel U6 RNA Polymerase III Promoters: Their Implication for CRISPR-Cas9-Mediated Gene Editing in Aspergillus oryzae.
    Chutrakul C; Panchanawaporn S; Jeennor S; Anantayanon J; Vorapreeda T; Vichai V; Laoteng K
    Curr Microbiol; 2019 Dec; 76(12):1443-1451. PubMed ID: 31541261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum.
    Wang C; Rollins JA
    Fungal Genet Biol; 2021 Sep; 154():103598. PubMed ID: 34119663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoter Orientation within an AAV-CRISPR Vector Affects Cas9 Expression and Gene Editing Efficiency.
    Fry LE; Peddle CF; Stevanovic M; Barnard AR; McClements ME; MacLaren RE
    CRISPR J; 2020 Aug; 3(4):276-283. PubMed ID: 32833533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells.
    Dong F; Xie K; Chen Y; Yang Y; Mao Y
    Biochem Biophys Res Commun; 2017 Jan; 482(4):889-895. PubMed ID: 27890617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris.
    Yang Y; Liu G; Chen X; Liu M; Zhan C; Liu X; Bai Z
    Enzyme Microb Technol; 2020 Aug; 138():109556. PubMed ID: 32527526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a CRISPR/Cas9 System for Genome Editing in the Basidiomycetous Yeast Rhodosporidium toruloides.
    Jiao X; Zhang Y; Liu X; Zhang Q; Zhang S; Zhao ZK
    Biotechnol J; 2019 Jul; 14(7):e1900036. PubMed ID: 31066204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing.
    Tang X; Ren Q; Yang L; Bao Y; Zhong Z; He Y; Liu S; Qi C; Liu B; Wang Y; Sretenovic S; Zhang Y; Zheng X; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2019 Jul; 17(7):1431-1445. PubMed ID: 30582653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.
    Xie K; Minkenberg B; Yang Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3570-5. PubMed ID: 25733849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription.
    Wu C; Chen Y; Qiu Y; Niu X; Zhu N; Chen J; Yao H; Wang W; Ma Y
    Biotechnol Lett; 2020 Jul; 42(7):1203-1210. PubMed ID: 32300998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations.
    Huang X; Wang Y; Xu J; Wang N
    Plant Mol Biol; 2020 Oct; 104(3):297-307. PubMed ID: 32748081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.