These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 27743043)

  • 1. A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation.
    Baramee S; Teeravivattanakit T; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1175-1188. PubMed ID: 27743043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a family 6 cellobiohydrolase from the basidiomycete Phanerochaete chrysosporium.
    Tachioka M; Nakamura A; Ishida T; Igarashi K; Samejima M
    Acta Crystallogr F Struct Biol Commun; 2017 Jul; 73(Pt 7):398-403. PubMed ID: 28695848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary X-ray analysis of cellobiohydrolase Cel7B from Melanocarpus albomyces.
    Parkkinen T; Koivula A; Vehmaanperä J; Rouvinen J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Sep; 63(Pt 9):754-7. PubMed ID: 17768346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic mechanism of cellulose degradation by a cellobiohydrolase, CelS.
    Saharay M; Guo H; Smith JC
    PLoS One; 2010 Oct; 5(10):e12947. PubMed ID: 20967294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermotolerance Mechanism of Fungal GH6 Cellobiohydrolase. Part I. Characterization of Thermotolerant Mutant from the Basidiomycete
    Yamaguchi S; Sunagawa N; Samejima M; Igarashi K
    J Appl Glycosci (1999); 2024; 71(2):55-62. PubMed ID: 38863951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermotolerance Mechanism of Fungal GH6 Cellobiohydrolase. Part II. Structural Analysis of Thermotolerant Mutant from the Basidiomycete
    Yamaguchi S; Sunagawa N; Samejima M; Igarashi K
    J Appl Glycosci (1999); 2024; 71(2):63-72. PubMed ID: 38863950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First evidence of a horizontally-acquired GH-7 cellobiohydrolase from a longhorned beetle genome.
    Shin NR; Pauchet Y
    Arch Insect Biochem Physiol; 2023 Oct; 114(2):1-14. PubMed ID: 37533217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Screening, enzyme activity and genomic analysis of
    Chen ZJ; Wang HJ; Tian X; Zhang G
    Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3404-3412. PubMed ID: 38511380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assay of cellulose 1,4-β-cellobiosidase activity in soil.
    Alserae H; Deng S
    J Microbiol Methods; 2023 Dec; 215():106861. PubMed ID: 38030086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and distribution of endoglucanase, cellobiohydrolase, and beta-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom.
    Cai YJ; Chapman SJ; Buswell JA; Chang ST
    Appl Environ Microbiol; 1999 Feb; 65(2):553-9. PubMed ID: 9925582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation.
    Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass.
    Hirano K; Kurosaki M; Nihei S; Hasegawa H; Shinoda S; Haruki M; Hirano N
    Sci Rep; 2016 Oct; 6():35709. PubMed ID: 27759119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved catalytic activity and stability of cellobiohydrolase (Cel6A) from the Aspergillus fumigatus by rational design.
    Dodda SR; Sarkar N; Jain P; Aikat K; Mukhopadhyay SS
    Protein Eng Des Sel; 2020 Sep; 33():. PubMed ID: 32930798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoactivation of a cellobiohydrolase.
    Westh P; Borch K; Sørensen T; Tokin R; Kari J; Badino S; Cavaleiro MA; Røjel N; Christensen S; Vesterager CS; Schiano-di-Cola C
    Biotechnol Bioeng; 2018 Apr; 115(4):831-838. PubMed ID: 29240229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterisation of a new halotolerant seawater active glycoside hydrolase family 6 cellobiohydrolase from a salt marsh.
    Leadbeater DR; Bruce NC
    Sci Rep; 2024 Feb; 14(1):3205. PubMed ID: 38332324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of ionic liquid-treated substrate with an Iocasia fonsfrigidae strain SP3-1 endoglucanase.
    Heng S; Sutheeworapong S; Wangnai C; Champreda V; Kosugi A; Ratanakhanokchai K; Tachaapaikoon C; Ceballos RM
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):63. PubMed ID: 38189956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility insights into the application of
    Li G; Yuan Y; Jin B; Zhang Z; Murtaza B; Zhao H; Li X; Wang L; Xu Y
    Front Microbiol; 2023; 14():1205767. PubMed ID: 37608941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics and cellulolytic, hemicellulolytic, and amylolytic potential of
    Heng S; Sutheeworapong S; Champreda V; Uke A; Kosugi A; Pason P; Waeonukul R; Ceballos RM; Ratanakhanokchai K; Tachaapaikoon C
    PeerJ; 2022; 10():e14211. PubMed ID: 36281362
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.