These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 27743357)
1. High-Throughput Analysis of IgG Fc Glycopeptides by LC-MS. Falck D; Jansen BC; de Haan N; Wuhrer M Methods Mol Biol; 2017; 1503():31-47. PubMed ID: 27743357 [TBL] [Abstract][Full Text] [Related]
2. LaCyTools: A Targeted Liquid Chromatography-Mass Spectrometry Data Processing Package for Relative Quantitation of Glycopeptides. Jansen BC; Falck D; de Haan N; Hipgrave Ederveen AL; Razdorov G; Lauc G; Wuhrer M J Proteome Res; 2016 Jul; 15(7):2198-210. PubMed ID: 27267458 [TBL] [Abstract][Full Text] [Related]
3. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods. Reusch D; Haberger M; Falck D; Peter B; Maier B; Gassner J; Hook M; Wagner K; Bonnington L; Bulau P; Wuhrer M MAbs; 2015; 7(4):732-42. PubMed ID: 25996192 [TBL] [Abstract][Full Text] [Related]
4. MS-Based Allotype-Specific Analysis of Polyclonal IgG-Fc Sénard T; Gargano AFG; Falck D; de Taeye SW; Rispens T; Vidarsson G; Wuhrer M; Somsen GW; Domínguez-Vega E Front Immunol; 2020; 11():2049. PubMed ID: 32973813 [TBL] [Abstract][Full Text] [Related]
5. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. Baković MP; Selman MH; Hoffmann M; Rudan I; Campbell H; Deelder AM; Lauc G; Wuhrer M J Proteome Res; 2013 Feb; 12(2):821-31. PubMed ID: 23298168 [TBL] [Abstract][Full Text] [Related]
6. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. Bongers J; Devincentis J; Fu J; Huang P; Kirkley DH; Leister K; Liu P; Ludwig R; Rumney K; Tao L; Wu W; Russell RJ J Chromatogr A; 2011 Nov; 1218(45):8140-9. PubMed ID: 21978954 [TBL] [Abstract][Full Text] [Related]
7. Absolute quantitation of high abundant Fc-glycopeptides from human serum IgG-1. Cao C; Yu L; Fu D; Yuan J; Liang X Anal Chim Acta; 2020 Mar; 1102():130-139. PubMed ID: 32043992 [TBL] [Abstract][Full Text] [Related]
8. High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Reusch D; Haberger M; Selman MH; Bulau P; Deelder AM; Wuhrer M; Engler N Anal Biochem; 2013 Jan; 432(2):82-9. PubMed ID: 23026777 [TBL] [Abstract][Full Text] [Related]
9. Immunoglobulin G glycopeptide profiling by matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry. Selman MH; McDonnell LA; Palmblad M; Ruhaak LR; Deelder AM; Wuhrer M Anal Chem; 2010 Feb; 82(3):1073-81. PubMed ID: 20058878 [TBL] [Abstract][Full Text] [Related]
10. Glycoform-resolved pharmacokinetic studies in a rat model employing glycoengineered variants of a therapeutic monoclonal antibody. Falck D; Thomann M; Lechmann M; Koeleman CAM; Malik S; Jany C; Wuhrer M; Reusch D MAbs; 2021; 13(1):1865596. PubMed ID: 33382957 [TBL] [Abstract][Full Text] [Related]
11. Sialic Acid Derivatization for the Rapid Subclass- and Sialic Acid Linkage-Specific MALDI-TOF-MS Analysis of IgG Fc-Glycopeptides. de Haan N; Reiding KR; Wuhrer M Methods Mol Biol; 2017; 1503():49-62. PubMed ID: 27743358 [TBL] [Abstract][Full Text] [Related]
12. Site-Specific N- and O-Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach. Stavenhagen K; Hinneburg H; Kolarich D; Wuhrer M Methods Mol Biol; 2017; 1503():109-119. PubMed ID: 27743362 [TBL] [Abstract][Full Text] [Related]
13. Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. Selman MH; Derks RJ; Bondt A; Palmblad M; Schoenmaker B; Koeleman CA; van de Geijn FE; Dolhain RJ; Deelder AM; Wuhrer M J Proteomics; 2012 Feb; 75(4):1318-29. PubMed ID: 22120122 [TBL] [Abstract][Full Text] [Related]
14. IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis. Selman MH; Niks EH; Titulaer MJ; Verschuuren JJ; Wuhrer M; Deelder AM J Proteome Res; 2011 Jan; 10(1):143-52. PubMed ID: 20672848 [TBL] [Abstract][Full Text] [Related]
15. Liquid chromatography-tandem mass spectrometry glycoproteomic study of porcine IgG and detection of subtypes. Battellino T; Bacala R; Gigolyk B; Ong G; Teraiya MV; Perreault H Rapid Commun Mass Spectrom; 2021 May; 35(9):e9063. PubMed ID: 33538041 [TBL] [Abstract][Full Text] [Related]
16. Large-scale characterization of intact N-glycopeptides using an automated glycoproteomic method. Cheng K; Chen R; Seebun D; Ye M; Figeys D; Zou H J Proteomics; 2014 Oct; 110():145-54. PubMed ID: 25182382 [TBL] [Abstract][Full Text] [Related]
17. Analytical characterization of IgG Fc subclass variants through high-resolution separation combined with multiple LC-MS identification. He XA; Washburn N; Arevalo E; Robblee JH Anal Bioanal Chem; 2015 Sep; 407(23):7055-66. PubMed ID: 26231686 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Analysis of the IgG N-Glycome by UPLC-FLR. Pučić-Baković M Methods Mol Biol; 2017; 1503():21-29. PubMed ID: 27743356 [TBL] [Abstract][Full Text] [Related]
19. High-Throughput Glycan Profiling of Human Serum IgG Subclasses Using Parallel Reaction Monitoring Peptide Bond Fragmentation of Glycopeptides and Microflow LC-MS. Zhao Y; Raidas S; Mao Y; Li N J Proteome Res; 2024 Feb; 23(2):585-595. PubMed ID: 38231888 [TBL] [Abstract][Full Text] [Related]
20. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Thaysen-Andersen M; Packer NH Biochim Biophys Acta; 2014 Sep; 1844(9):1437-52. PubMed ID: 24830338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]