BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27743491)

  • 21. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions.
    Sestric R; Munch G; Cicek N; Sparling R; Levin DB
    Bioresour Technol; 2014 Jul; 164():41-6. PubMed ID: 24835917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium.
    Bellou S; Triantaphyllidou IE; Mizerakis P; Aggelis G
    J Biotechnol; 2016 Sep; 234():116-126. PubMed ID: 27498313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heteroexpression and biochemical characterization of a glucose-6-phosphate dehydrogenase from oleaginous yeast Yarrowia lipolytica.
    Bian M; Li S; Wei H; Huang S; Zhou F; Zhu Y; Zhu G
    Protein Expr Purif; 2018 Aug; 148():1-8. PubMed ID: 29580928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate.
    Quarterman J; Slininger PJ; Kurtzman CP; Thompson SR; Dien BS
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3319-3334. PubMed ID: 28012044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discoveries of the phosphatidate phosphatase genes in yeast published in the
    Carman GM
    J Biol Chem; 2019 Feb; 294(5):1681-1689. PubMed ID: 30061152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphatidate phosphatase, a key regulator of lipid homeostasis.
    Pascual F; Carman GM
    Biochim Biophys Acta; 2013 Mar; 1831(3):514-22. PubMed ID: 22910056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.
    Dulermo T; Lazar Z; Dulermo R; Rakicka M; Haddouche R; Nicaud JM
    Biochim Biophys Acta; 2015 Sep; 1851(9):1107-17. PubMed ID: 25959598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.
    Back A; Rossignol T; Krier F; Nicaud JM; Dhulster P
    Microb Cell Fact; 2016 Aug; 15(1):147. PubMed ID: 27553851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver.
    Pasquaré SJ; Ilincheta de Boschero MG; Giusto NM
    Exp Gerontol; 2001 Aug; 36(8):1387-401. PubMed ID: 11602212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina.
    Dourou M; Mizerakis P; Papanikolaou S; Aggelis G
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7213-7226. PubMed ID: 28801795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subcellular distribution of N-ethylmaleimide-sensitive and -insensitive phosphatidic acid phosphohydrolase in rat brain.
    Fleming IN; Yeaman SJ
    Biochim Biophys Acta; 1995 Jan; 1254(2):161-8. PubMed ID: 7827121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica.
    Seip J; Jackson R; He H; Zhu Q; Hong SP
    Appl Environ Microbiol; 2013 Dec; 79(23):7360-70. PubMed ID: 24056466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disrupting a phospholipase A
    Li JX; Xu J; Ruan JC; Meng HM; Su H; Han XF; Lu M; Li FL; Wang SA
    J Appl Microbiol; 2021 Jan; 130(1):100-108. PubMed ID: 32648664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica.
    Zhang H; Damude HG; Yadav NS
    Yeast; 2012 Jan; 29(1):25-38. PubMed ID: 22189651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.
    Ochoa-Estopier A; Guillouet SE
    J Biotechnol; 2014 Jan; 170():35-41. PubMed ID: 24316225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica.
    Carsanba E; Papanikolaou S; Erten H
    Crit Rev Biotechnol; 2018 Dec; 38(8):1230-1243. PubMed ID: 29764205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic Engineering of Oleaginous Yeast
    Ghogare R; Chen S; Xiong X
    Front Microbiol; 2020; 11():1717. PubMed ID: 32849364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of heterologous α-amylase production in two expression platforms dedicated for Yarrowia lipolytica: commercial Po1g-pYLSC (php4d) and custom-made A18-pYLTEF (pTEF).
    Celińska E; Borkowska M; Białas W
    Yeast; 2016 May; 33(5):165-81. PubMed ID: 26694961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica.
    Xu P; Qiao K; Stephanopoulos G
    Biotechnol Bioeng; 2017 Jul; 114(7):1521-1530. PubMed ID: 28295166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109.
    Wang GY; Zhang Y; Chi Z; Liu GL; Wang ZP; Chi ZM
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1637-45. PubMed ID: 25427679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.