These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27743532)

  • 1. Mineralogical determination and geo-chemical modeling of chromium release from AOD slag: Distribution and leachability aspects.
    Li J; Liu B; Zeng Y; Wang Z
    Chemosphere; 2017 Jan; 167():360-366. PubMed ID: 27743532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity assessment and geochemical model of chromium leaching from AOD slag.
    Liu B; Li J; Zeng Y; Wang Z
    Chemosphere; 2016 Feb; 144():2052-7. PubMed ID: 26583286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum availability and mineralogical control of chromium released from AOD slag.
    Li J; Liu B; Zeng Y; Wang Z; Gao Z
    Environ Monit Assess; 2017 Mar; 189(3):113. PubMed ID: 28210896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term leaching characterization and geochemical modeling of chromium released from AOD slag.
    Liu B; Li J; Wang Z; Zeng Y; Ren Q
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):921-929. PubMed ID: 31814076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of steel slag leaching: Batch tests and modeling.
    De Windt L; Chaurand P; Rose J
    Waste Manag; 2011 Feb; 31(2):225-35. PubMed ID: 20646922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge for the preferential removal of iron.
    Majuste D; Mansur MB
    J Hazard Mater; 2009 Feb; 162(1):356-64. PubMed ID: 18579293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge generated by the stainless steelmaking industry.
    Majuste D; Mansur MB
    J Hazard Mater; 2008 May; 153(1-2):89-95. PubMed ID: 17889435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.
    Jin Z; Liu T; Yang Y; Jackson D
    Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thin-film accelerated carbonation on steel slag leaching.
    Baciocchi R; Costa G; Polettini A; Pomi R
    J Hazard Mater; 2015 Apr; 286():369-78. PubMed ID: 25596552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments.
    Gomes HI; Funari V; Mayes WM; Rogerson M; Prior TJ
    J Environ Manage; 2018 Sep; 222():30-36. PubMed ID: 29800862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impacts of asphalt mixes with electric arc furnace steel slag.
    Milačič R; Zuliani T; Oblak T; Mladenovič A; Ančar JŠ
    J Environ Qual; 2011; 40(4):1153-61. PubMed ID: 21712585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.
    van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN
    Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburisation slag designed for wastewater treatment.
    Zuo M; Renman G; Gustafsson JP; Renman A
    Water Res; 2015 Dec; 87():271-81. PubMed ID: 26433005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations.
    Loncnar M; van der Sloot HA; Mladenovič A; Zupančič M; Kobal L; Bukovec P
    J Hazard Mater; 2016 Nov; 317():147-157. PubMed ID: 27262282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The release analysis of As and Cr metals in lead-zinc smelting slag: Mineralogical analysis, bioavailability and leachability analysis.
    Ma Y; Li C; Yan J; Yu H; Kan H; Yu W; Zhou X; Meng Q; Dong P
    Environ Res; 2023 Jul; 229():115751. PubMed ID: 36966997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag.
    Stewart DI; Bray AW; Udoma G; Hobson AJ; Mayes WM; Rogerson M; Burke IT
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9861-9872. PubMed ID: 29372528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching modelling of slurry-phase carbonated steel slag.
    Costa G; Polettini A; Pomi R; Stramazzo A
    J Hazard Mater; 2016 Jan; 302():415-425. PubMed ID: 26489916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaching properties of Mn-slag from the pyrometallurgical recycling of alkaline batteries: standardized leaching tests and influence of operational parameters.
    Pareuil P; Bordas F; Joussein E; Bollinger JC
    Environ Technol; 2010 Dec; 31(14):1565-76. PubMed ID: 21275253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of ladle slag in cement composites: Environmental impacts.
    Serjun VZ; Mladenovič A; Mirtič B; Meden A; Ščančar J; Milačič R
    Waste Manag; 2015 Sep; 43():376-85. PubMed ID: 26008145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaching mechanisms of Cr(VI) from chromite ore processing residue.
    Wazne M; Jagupilla SC; Moon DH; Christodoulatos C; Koutsospyros A
    J Environ Qual; 2008; 37(6):2125-34. PubMed ID: 18948466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.