These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 27743600)
1. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. Olsen CE; Huang XC; Hansen CIC; Cipollini D; Ørgaard M; Matthes A; Geu-Flores F; Koch MA; Agerbirk N Phytochemistry; 2016 Dec; 132():33-56. PubMed ID: 27743600 [TBL] [Abstract][Full Text] [Related]
2. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. Agerbirk N; Hansen CC; Kiefer C; Hauser TP; Ørgaard M; Asmussen Lange CB; Cipollini D; Koch MA Phytochemistry; 2021 May; 185():112668. PubMed ID: 33743499 [TBL] [Abstract][Full Text] [Related]
3. Glucosinolate profiles and phylogeny in Barbarea compared to other tribe Cardamineae (Brassicaceae) and Reseda (Resedaceae), based on a library of ion trap HPLC-MS/MS data of reference desulfoglucosinolates. Agerbirk N; Hansen CC; Olsen CE; Kiefer C; Hauser TP; Christensen S; Jensen KR; Ørgaard M; Pattison DI; Lange CBA; Cipollini D; Koch MA Phytochemistry; 2021 May; 185():112658. PubMed ID: 33744557 [TBL] [Abstract][Full Text] [Related]
4. Glucosinolate structures in evolution. Agerbirk N; Olsen CE Phytochemistry; 2012 May; 77():16-45. PubMed ID: 22405332 [TBL] [Abstract][Full Text] [Related]
6. Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. Agerbirk N; Olsen CE; Heimes C; Christensen S; Bak S; Hauser TP Phytochemistry; 2015 Jul; 115():130-42. PubMed ID: 25277803 [TBL] [Abstract][Full Text] [Related]
7. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. Bennett RN; Mellon FA; Kroon PA J Agric Food Chem; 2004 Feb; 52(3):428-38. PubMed ID: 14759128 [TBL] [Abstract][Full Text] [Related]
8. Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Agerbirk N; Olsen CE Phytochemistry; 2011 May; 72(7):610-23. PubMed ID: 21354584 [TBL] [Abstract][Full Text] [Related]
9. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover. Cárdenas PD; Landtved JP; Larsen SH; Lindegaard N; Wøhlk S; Jensen KR; Pattison DI; Burow M; Bak S; Crocoll C; Agerbirk N Phytochemistry; 2023 Sep; 213():113742. PubMed ID: 37269935 [TBL] [Abstract][Full Text] [Related]
10. Acylated glucosinolates with diverse acyl groups investigated by high resolution mass spectrometry and infrared multiphoton dissociation. Bianco G; Agerbirk N; Losito I; Cataldi TR Phytochemistry; 2014 Apr; 100():92-102. PubMed ID: 24512839 [TBL] [Abstract][Full Text] [Related]
12. 1,4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. Agerbirk N; Petersen BL; Olsen CE; Halkier BA; Nielsen JK J Agric Food Chem; 2001 Mar; 49(3):1502-7. PubMed ID: 11312886 [TBL] [Abstract][Full Text] [Related]
13. Characterization of glucosinolate--myrosinase system in developing salt cress Thellungiella halophila. Pang Q; Chen S; Li L; Yan X Physiol Plant; 2009 May; 136(1):1-9. PubMed ID: 19508363 [TBL] [Abstract][Full Text] [Related]
14. Glucosinolate hydrolysis products in the crucifer Barbarea vulgaris include a thiazolidine-2-one from a specific phenolic isomer as well as oxazolidine-2-thiones. Agerbirk N; Olsen CE Phytochemistry; 2015 Jul; 115():143-51. PubMed ID: 25467719 [TBL] [Abstract][Full Text] [Related]
15. Glucosinolates in members of the family brassicaceae: separation and identification by LC/ESI-MS-MS. Matthäus B; Luftmann H J Agric Food Chem; 2000 Jun; 48(6):2234-9. PubMed ID: 10888528 [TBL] [Abstract][Full Text] [Related]
16. Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Agerbirk N; Warwick SI; Hansen PR; Olsen CE Phytochemistry; 2008 Dec; 69(17):2937-49. PubMed ID: 18995873 [TBL] [Abstract][Full Text] [Related]
17. Identification of Glucosinolates in Seeds of Three Brassicaceae Species Known to Hyperaccumulate Heavy Metals. Montaut S; Guido BS; Grison C; Rollin P Chem Biodivers; 2017 Mar; 14(3):. PubMed ID: 27981800 [TBL] [Abstract][Full Text] [Related]
18. Glucosinolate turnover in Brassicales species to an oxazolidin-2-one, formed via the 2-thione and without formation of thioamide. Agerbirk N; Matthes A; Erthmann PØ; Ugolini L; Cinti S; Lazaridi E; Nuzillard JM; Müller C; Bak S; Rollin P; Lazzeri L Phytochemistry; 2018 Sep; 153():79-93. PubMed ID: 29886160 [TBL] [Abstract][Full Text] [Related]
19. Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Windsor AJ; Reichelt M; Figuth A; Svatos A; Kroymann J; Kliebenstein DJ; Gershenzon J; Mitchell-Olds T Phytochemistry; 2005 Jun; 66(11):1321-33. PubMed ID: 15913672 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the glucosinolates in Hesperis matronalis L. and Hesperis laciniata All.: Unveiling 4'-O-β-d-apiofuranosylglucomatronalin. Montaut S; Read S; Blažević I; Nuzillard JM; Roje M; Harakat D; Rollin P Carbohydr Res; 2020 Feb; 488():107898. PubMed ID: 31918339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]