These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27743772)

  • 1. Development of a fluorescent protein-antibody Förster resonance energy transfer probe for the detection and imaging of osteocalcin.
    Chung CI; Makino R; Ohmuro-Matsuyama Y; Ueda H
    J Biosci Bioeng; 2017 Feb; 123(2):272-276. PubMed ID: 27743772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open flower fluoroimmunoassay: a general method to make fluorescent protein-based immunosensor probes.
    Chung CI; Makino R; Dong J; Ueda H
    Anal Chem; 2015 Mar; 87(6):3513-9. PubMed ID: 25686487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.
    Day RN; Davidson MW
    Bioessays; 2012 May; 34(5):341-50. PubMed ID: 22396229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Quenchbodies by protein transamination reaction.
    Dong J; Jeong HJ; Ueda H
    J Biosci Bioeng; 2016 Jul; 122(1):125-30. PubMed ID: 26811222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET Microscopy for Real-Time Visualization of Second Messengers in Living Cells.
    Kraft AE; Nikolaev VO
    Methods Mol Biol; 2017; 1563():85-90. PubMed ID: 28324603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous noncompetitive immunoassay based on the energy transfer between fluorolabeled antibody variable domains (open sandwich fluoroimmunoassay).
    Ueda H; Kubota K; Wang Y; Tsumoto K; Mahoney W; Kumagai I; Nagamune T
    Biotechniques; 1999 Oct; 27(4):738-42. PubMed ID: 10524316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.
    Fujioka M; Asano Y; Nakada S; Ohba Y
    Methods Mol Biol; 2017; 1555():513-534. PubMed ID: 28092053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species.
    Höfig H; Cerminara M; Ritter I; Schöne A; Pohl M; Steffen V; Walter J; Vergara Dal Pont I; Katranidis A; Fitter J
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FÖrster resonance energy transfer (FRET)-based biosensors for biological applications.
    Zhang X; Hu Y; Yang X; Tang Y; Han S; Kang A; Deng H; Chi Y; Zhu D; Lu Y
    Biosens Bioelectron; 2019 Aug; 138():111314. PubMed ID: 31096114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
    Miyawaki A
    Annu Rev Biochem; 2011; 80():357-73. PubMed ID: 21529159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRET microscopy in the living cell: different approaches, strengths and weaknesses.
    Padilla-Parra S; Tramier M
    Bioessays; 2012 May; 34(5):369-76. PubMed ID: 22415767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo spectral multiplexing approach for the cooperative imaging of different disease-related biomarkers with near-infrared fluorescent forster resonance energy transfer probes.
    Busch C; Schröter T; Grabolle M; Wenzel M; Kempe H; Kaiser WA; Resch-Genger U; Hilger I
    J Nucl Med; 2012 Apr; 53(4):638-46. PubMed ID: 22407968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.
    Tao W; Rubart M; Ryan J; Xiao X; Qiao C; Hato T; Davidson MW; Dunn KW; Day RN
    Am J Physiol Cell Physiol; 2015 Dec; 309(11):C724-35. PubMed ID: 26333599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of FRET biosensors for mammalian and plant systems.
    Hamers D; van Voorst Vader L; Borst JW; Goedhart J
    Protoplasma; 2014 Mar; 251(2):333-47. PubMed ID: 24337770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the sensitivity and dynamic range of reagentless fluorescent immunosensors by knowledge-based design.
    Renard M; Bedouelle H
    Biochemistry; 2004 Dec; 43(49):15453-62. PubMed ID: 15581357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of FRET-Based Biosensor "ATeam" for Visualization of ATP Levels in the Mitochondrial Matrix of Living Mammalian Cells.
    Yoshida T; Alfaqaan S; Sasaoka N; Imamura H
    Methods Mol Biol; 2017; 1567():231-243. PubMed ID: 28276022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells.
    Liu Y; Zhao ZM; Miao JY; Zhao BX
    Anal Chim Acta; 2016 May; 921():77-83. PubMed ID: 27126792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dots and fluorescent protein FRET-based biosensors.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    Adv Exp Med Biol; 2012; 733():63-74. PubMed ID: 22101713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.