These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27743797)

  • 1. Enhanced plasmid loss in bacterial populations exposed to the antimicrobial compound irgasan delivered from interpenetrating polymer network silicone hydrogels.
    Riber L; Burmølle M; Alm M; Milani SM; Thomsen P; Hansen LH; Sørensen SJ
    Plasmid; 2016; 87-88():72-78. PubMed ID: 27743797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-release of dicloxacillin and thioridazine from catheter material containing an interpenetrating polymer network for inhibiting device-associated Staphylococcus aureus infection.
    Stenger M; Klein K; Grønnemose RB; Klitgaard JK; Kolmos HJ; Lindholt JS; Alm M; Thomsen P; Andersen TE
    J Control Release; 2016 Nov; 241():125-134. PubMed ID: 27663229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft hydrogels interpenetrating silicone--A polymer network for drug-releasing medical devices.
    Steffensen SL; Vestergaard MH; Møller EH; Groenning M; Alm M; Franzyk H; Nielsen HM
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):402-10. PubMed ID: 25892578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth studies of plasmid bearing and plasmid cured Yersinia enterocolitica GER O:3 in the presence of cefsulodin, irgasan and novobiocin at 25 and 37 degrees C.
    Logue CM; Sherwood JS; Doetkott C
    J Appl Microbiol; 2006 Jun; 100(6):1299-306. PubMed ID: 16696677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent cation dependent resistance in E. coli LMR-26 to the broad spectrum antimicrobial agent irgasan.
    Persino R; Lynch DL
    Microbios; 1982; 34(135):41-57. PubMed ID: 6755188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of plasmid curing in bacteria.
    Spengler G; Molnár A; Schelz Z; Amaral L; Sharples D; Molnár J
    Curr Drug Targets; 2006 Jul; 7(7):823-41. PubMed ID: 16842214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable sodium alginate-based semi-interpenetrating polymer network hydrogels for antibacterial application.
    Rao KM; Rao KS; Ramanjaneyulu G; Rao KC; Subha MC; Ha CS
    J Biomed Mater Res A; 2014 Sep; 102(9):3196-206. PubMed ID: 24151188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous interpenetrating silicone hydrogel based on radical/addition polymerization for extended release of ocular therapeutics.
    Xu J; Zhang L; Zhang Y; Li T; Huo G
    J Biomater Sci Polym Ed; 2014; 25(2):121-35. PubMed ID: 24083662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Plasmid Segregational Stability in a Growing Bacterial Population.
    Kramer MG
    Methods Mol Biol; 2016; 1409():125-33. PubMed ID: 26846807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations.
    Bahl MI; Hansen LH; Sørensen SJ
    FEMS Microbiol Lett; 2007 Jan; 266(2):250-6. PubMed ID: 17132149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.
    Mohanty S; Alm M; Hemmingsen M; Dolatshahi-Pirouz A; Trifol J; Thomsen P; Dufva M; Wolff A; Emnéus J
    Biomacromolecules; 2016 Apr; 17(4):1321-9. PubMed ID: 26902925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties.
    Wang J; Hu H; Yang Z; Wei J; Li J
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():376-86. PubMed ID: 26838864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and in vitro evaluation of infection resistant materials: A novel surface modification process for silicone and Dacron.
    Hussain A; Curry B; Cahalan L; Minkin S; Gartner M; Cahalan P
    J Biomater Appl; 2016 Feb; 30(7):1103-13. PubMed ID: 26608459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of irgasan on bacterial growth and its adsorption into the cell wall.
    Meincke BE; Kranz RG; Lynch DL
    Microbios; 1980; 28(113-114):133-47. PubMed ID: 6787394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and use of flow cytometry optimized plasmid-sensor strains.
    Bahl MI; Oregaard G; Sørensen SJ; Hansen LH
    Methods Mol Biol; 2009; 532():257-68. PubMed ID: 19271190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties.
    Cao B; Tang Q; Li L; Humble J; Wu H; Liu L; Cheng G
    Adv Healthc Mater; 2013 Aug; 2(8):1096-102. PubMed ID: 23386310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels.
    Gil ES; Hudson SM
    Biomacromolecules; 2007 Jan; 8(1):258-64. PubMed ID: 17206815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.