These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27743943)

  • 1. Human skeletal muscle behavior in vivo: Finite element implementation, experiment, and passive mechanical characterization.
    Clemen CB; Benderoth GEK; Schmidt A; Hübner F; Vogl TJ; Silber G
    J Mech Behav Biomed Mater; 2017 Jan; 65():679-687. PubMed ID: 27743943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro compressive properties of skeletal muscles and inverse finite element analysis: Comparison of human versus animals.
    Mo F; Zheng Z; Zhang H; Li G; Yang Z; Sun D
    J Biomech; 2020 Aug; 109():109916. PubMed ID: 32807316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive properties of passive skeletal muscle-the impact of precise sample geometry on parameter identification in inverse finite element analysis.
    Böl M; Kruse R; Ehret AE; Leichsenring K; Siebert T
    J Biomech; 2012 Oct; 45(15):2673-9. PubMed ID: 22954714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for a mechanical characterisation of human gluteal tissue.
    Then C; Menger J; Benderoth G; Alizadeh M; Vogl TJ; Hübner F; Silber G
    Technol Health Care; 2007; 15(6):385-98. PubMed ID: 18057562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model.
    Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J
    Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties.
    Hashemi SS; Asgari M; Rasoulian A
    Proc Inst Mech Eng H; 2020 Jun; 234(6):590-602. PubMed ID: 32133933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the accuracy and fitting of transversely isotropic material models.
    Feng Y; Okamoto RJ; Genin GM; Bayly PV
    J Mech Behav Biomed Mater; 2016 Aug; 61():554-566. PubMed ID: 27136091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive transverse mechanical properties of skeletal muscle under in vivo compression.
    Bosboom EM; Hesselink MK; Oomens CW; Bouten CV; Drost MR; Baaijens FP
    J Biomech; 2001 Oct; 34(10):1365-8. PubMed ID: 11522318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical soft tissue property validation in tissue engineering using magnetic resonance imaging experimental research.
    Vogl TJ; Then C; Naguib NN; Nour-Eldin NE; Larson M; Zangos S; Silber G
    Acad Radiol; 2010 Dec; 17(12):1486-91. PubMed ID: 20926314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.