These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27744066)

  • 1. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage.
    Zhou L; Liu J; Dong F
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():544-548. PubMed ID: 27744066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.
    Zhou C; Vannela R; Hayes KF; Rittmann BE
    J Hazard Mater; 2014 May; 272():28-35. PubMed ID: 24675611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: Implications for acid mine drainage treatment and neutralization.
    Liu J; Zhou L; Dong F; Hudson-Edwards KA
    Chemosphere; 2017 Feb; 168():529-538. PubMed ID: 27852449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of mackinawite to greigite by trichloroethylene and tetrachloroethylene.
    Lan Y; Elwood Madden AS; Butler EC
    Environ Sci Process Impacts; 2016 Oct; 18(10):1266-1273. PubMed ID: 27711891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium.
    Le Pape P; Battaglia-Brunet F; Parmentier M; Joulian C; Gassaud C; Fernandez-Rojo L; Guigner JM; Ikogou M; Stetten L; Olivi L; Casiot C; Morin G
    J Hazard Mater; 2017 Jan; 321():764-772. PubMed ID: 27720469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.
    Veeramani H; Scheinost AC; Monsegue N; Qafoku NP; Kukkadapu R; Newville M; Lanzirotti A; Pruden A; Murayama M; Hochella MF
    Environ Sci Technol; 2013 Mar; 47(5):2361-9. PubMed ID: 23373896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria.
    Gramp JP; Bigham JM; Jones FS; Tuovinen OH
    J Hazard Mater; 2010 Mar; 175(1-3):1062-7. PubMed ID: 19962824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of efficient remediation of U(VI) using biogenic CMC-FeS complex produced by sulfate-reducing bacteria.
    He S; Hu W; Liu Y; Xie Y; Zhou H; Wang X; Chen J; Zhang Y
    J Hazard Mater; 2021 Oct; 420():126645. PubMed ID: 34329121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria.
    Hwang SK; Jho EH
    Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution over time of mackinawite generated on carbon steel by the SRB metabolic activity: an in-operando Raman study.
    Maaoui H; Leblanc V; Gueuné H; Guhel Y; Boudart B
    Biofouling; 2022 Mar; 38(3):271-285. PubMed ID: 35350932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development.
    Gao K; Jiang M; Guo C; Zeng Y; Fan C; Zhang J; Reinfelder JR; Huang W; Lu G; Dang Z
    Sci Total Environ; 2019 Nov; 690():1100-1109. PubMed ID: 31470473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of aqueous Hg(II) by mackinawite (FeS).
    Liu J; Valsaraj KT; Devai I; DeLaune RD
    J Hazard Mater; 2008 Sep; 157(2-3):432-40. PubMed ID: 18280650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial reaction of Sn(II) on mackinawite (FeS).
    Dulnee S; Scheinost AC
    J Contam Hydrol; 2015; 177-178():183-93. PubMed ID: 25957569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of adsorbed phosphate on jarosite reduction by a sulfate reducing bacterium and associated mineralogical transformation.
    Gao K; Hu Y; Guo C; Ke C; He C; Hao X; Lu G; Dang Z
    Ecotoxicol Environ Saf; 2020 Oct; 202():110921. PubMed ID: 32800256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen.
    Gallegos TJ; Fuller CC; Webb SM; Betterton W
    Environ Sci Technol; 2013 Jul; 47(13):7357-64. PubMed ID: 23742708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation.
    Wang H; Chen F; Mu S; Zhang D; Pan X; Lee DJ; Chang JS
    Bioresour Technol; 2013 Oct; 146():799-802. PubMed ID: 23993285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of the remediation of acid mine drainage by Maifan stones combined with SRB.
    Guo X; Hu Z; Fu S; Dong Y; Jiang G; Li Y
    PLoS One; 2022; 17(1):e0261823. PubMed ID: 35045075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic and spectroscopic characterization of Hg(II) immobilization by mackinawite (FeS).
    Jeong HY; Sun K; Hayes KF
    Environ Sci Technol; 2010 Oct; 44(19):7476-83. PubMed ID: 20825179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silane-based coatings on the pyrite for remediation of acid mine drainage.
    Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R
    Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.