BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27744067)

  • 1. Multifunctional thermoresponsive designer peptide hydrogels.
    De Leon-Rodriguez LM; Hemar Y; Mo G; Mitra AK; Cornish J; Brimble MA
    Acta Biomater; 2017 Jan; 47():40-49. PubMed ID: 27744067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling gelation with sequence: Towards programmable peptide hydrogels.
    Medini K; Mansel BW; Williams MAK; Brimble MA; Williams DE; Gerrard JA
    Acta Biomater; 2016 Oct; 43():30-37. PubMed ID: 27424085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-induced assembly of enzymatically-stable peptide hydrogels.
    Jones BH; Martinez AM; Wheeler JS; Spoerke ED
    Soft Matter; 2015 May; 11(18):3572-80. PubMed ID: 25853589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.
    Sun Y; Li W; Wu X; Zhang N; Zhang Y; Ouyang S; Song X; Fang X; Seeram R; Xue W; He L; Wu W
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2348-59. PubMed ID: 26720334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling network topology and mechanical properties of co-assembling peptide hydrogels.
    Boothroyd S; Saiani A; Miller AF
    Biopolymers; 2014 Jun; 101(6):669-80. PubMed ID: 26819975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions.
    Zhang L; Furst EM; Kiick KL
    J Control Release; 2006 Aug; 114(2):130-42. PubMed ID: 16890321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.
    Yu R; Zheng S
    J Biomater Sci Polym Ed; 2011; 22(17):2305-24. PubMed ID: 21092421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of a designed amyloid peptide containing the functional thienylalanine unit.
    Hamley IW; Brown GD; Castelletto V; Cheng G; Venanzi M; Caruso M; Placidi E; Aleman C; Revilla-López G; Zanuy D
    J Phys Chem B; 2010 Aug; 114(32):10674-83. PubMed ID: 20662537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology.
    Gao J; Tang C; Elsawy MA; Smith AM; Miller AF; Saiani A
    Biomacromolecules; 2017 Mar; 18(3):826-834. PubMed ID: 28068466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration.
    Kim S; Chung EH; Gilbert M; Healy KE
    J Biomed Mater Res A; 2005 Oct; 75(1):73-88. PubMed ID: 16049978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.
    Zhou M; Smith AM; Das AK; Hodson NW; Collins RF; Ulijn RV; Gough JE
    Biomaterials; 2009 May; 30(13):2523-30. PubMed ID: 19201459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembling peptide/thermoresponsive polymer composite hydrogels: effect of peptide-polymer interactions on hydrogel properties.
    Maslovskis A; Guilbaud JB; Grillo I; Hodson N; Miller AF; Saiani A
    Langmuir; 2014 Sep; 30(34):10471-80. PubMed ID: 25095719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides.
    Hamley IW; Cheng G; Castelletto V
    Macromol Biosci; 2011 Aug; 11(8):1068-78. PubMed ID: 21557478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme assisted peptide self-assemblies trigger cell adhesion in high density oxime based host gels.
    Criado-Gonzalez M; Loftin B; Rodon Fores J; Vautier D; Kocgozlu L; Jierry L; Schaaf P; Boulmedais F; Harth E
    J Mater Chem B; 2020 May; 8(20):4419-4427. PubMed ID: 32186320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides.
    Giraud T; Bouguet-Bonnet S; Stébé MJ; Richaudeau L; Pickaert G; Averlant-Petit MC; Stefan L
    Nanoscale; 2021 Jun; 13(23):10566-10578. PubMed ID: 34100504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the design and efficacy assessment of self-assembling peptide-based hydrogel-glycosaminoglycan mixtures for potential repair of early stage cartilage degeneration.
    Barco A; Ingham E; Fisher J; Fermor H; Davies RPW
    J Pept Sci; 2018 Aug; 24(8-9):e3114. PubMed ID: 30019359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery.
    Liu SQ; Ee PL; Ke CY; Hedrick JL; Yang YY
    Biomaterials; 2009 Mar; 30(8):1453-61. PubMed ID: 19097642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P(NIPAAM-co-HEMA) thermoresponsive hydrogels: an alternative approach for muscle cell sheet engineering.
    Villa C; Martello F; Erratico S; Tocchio A; Belicchi M; Lenardi C; Torrente Y
    J Tissue Eng Regen Med; 2017 Jan; 11(1):187-196. PubMed ID: 24799388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.