These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27744251)

  • 1. How do walkers avoid a mobile robot crossing their way?
    Vassallo C; Olivier AH; Souères P; Crétual A; Stasse O; Pettré J
    Gait Posture; 2017 Jan; 51():97-103. PubMed ID: 27744251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do walkers behave when crossing the way of a mobile robot that replicates human interaction rules?
    Vassallo C; Olivier AH; Souères P; Crétual A; Stasse O; Pettré J
    Gait Posture; 2018 Feb; 60():188-193. PubMed ID: 29248849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collision avoidance between two walkers: role-dependent strategies.
    Olivier AH; Marin A; Crétual A; Berthoz A; Pettré J
    Gait Posture; 2013 Sep; 38(4):751-6. PubMed ID: 23665066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum predicted distance: Applying a common metric to collision avoidance strategies between children and adult walkers.
    Rapos V; Cinelli M; Snyder N; Crétual A; Olivier AH
    Gait Posture; 2019 Jul; 72():16-21. PubMed ID: 31132592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamentals of soft robot locomotion.
    Calisti M; Picardi G; Laschi C
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of wheeled mobile robot collision avoidance under unknown environment.
    Wang Y; Li X; Zhang J; Li S; Xu Z; Zhou X
    Sci Prog; 2021; 104(3):368504211037771. PubMed ID: 34379021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of path curvature on collision avoidance behaviour between two walkers.
    Lynch SD; Kulpa R; Meerhoff LA; Sorel A; Pettré J; Olivier AH
    Exp Brain Res; 2021 Jan; 239(1):329-340. PubMed ID: 33175191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots With Certified Safety.
    Li X; Xu Z; Li S; Su Z; Zhou X
    IEEE Trans Cybern; 2022 Nov; 52(11):11859-11873. PubMed ID: 33961580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2015 May; 56():123-34. PubMed ID: 25497595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obstacle Avoidance of Multi-Sensor Intelligent Robot Based on Road Sign Detection.
    Zhao J; Fang J; Wang S; Wang K; Liu C; Han T
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of goal-directed spatial robot navigation in biomimetic models.
    Milford M; Schulz R
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers.
    Olivier AH; Marin A; Crétual A; Pettré J
    Gait Posture; 2012 Jul; 36(3):399-404. PubMed ID: 22560717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.
    Alnajjar F; Murase K
    Int J Neural Syst; 2006 Aug; 16(4):229-39. PubMed ID: 16972312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Assessing the Human Trajectory Planning Horizon.
    Carton D; Nitsch V; Meinzer D; Wollherr D
    PLoS One; 2016; 11(12):e0167021. PubMed ID: 27936015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-Robot Perception in Industrial Environments: A Survey.
    Bonci A; Cen Cheng PD; Indri M; Nabissi G; Sibona F
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Virtual Sensor for Collision Detection and Distinction with Conventional Industrial Robots.
    Li Z; Ye J; Wu H
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31126010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.