These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27744288)

  • 1. Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool.
    Bäuerle F; Zotter A; Schreiber G
    Protein Eng Des Sel; 2017 Mar; 30(3):149-156. PubMed ID: 27744288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function.
    Goudar CT; Harris SK; McInerney MJ; Suflita JM
    J Microbiol Methods; 2004 Dec; 59(3):317-26. PubMed ID: 15488275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model.
    Golicnik M
    Anal Biochem; 2010 Nov; 406(1):94-6. PubMed ID: 20599638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.
    Bezerra RM; Fraga I; Dias AA
    Comput Methods Programs Biomed; 2013 Jan; 109(1):26-31. PubMed ID: 23021091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress Curve Analysis Within BioCatNet: Comparing Kinetic Models for Enzyme-Catalyzed Self-Ligation.
    Buchholz PCF; Ohs R; Spiess AC; Pleiss J
    Biotechnol J; 2019 Mar; 14(3):e1800183. PubMed ID: 29999245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of kinetic parameters for enzyme-inhibition reaction models using direct time-dependent equations for reactant concentrations.
    Goličnik M
    Acta Chim Slov; 2012 Mar; 59(1):207-11. PubMed ID: 24061194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The integrated Michaelis-Menten rate equation: déjà vu or vu jàdé?
    Goličnik M
    J Enzyme Inhib Med Chem; 2013 Aug; 28(4):879-93. PubMed ID: 22630075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A century of enzyme kinetic analysis, 1913 to 2013.
    Johnson KA
    FEBS Lett; 2013 Sep; 587(17):2753-66. PubMed ID: 23850893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Removal of Time-Concentration Data Points from Progress Curves Improves the Determination of
    Petrič B; Goličnik M; Bavec A
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions.
    Duggleby RG; Clarke RB
    Biochim Biophys Acta; 1991 Nov; 1080(3):231-6. PubMed ID: 1954231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of progress curves for enzyme-catalyzed reactions: application to unstable enzymes, coupled reactions and transient-state kinetics.
    Duggleby RG
    Biochim Biophys Acta; 1994 Apr; 1205(2):268-74. PubMed ID: 8155708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.
    Pleiss J
    Trends Biotechnol; 2018 Mar; 36(3):234-238. PubMed ID: 29107319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution of the Michaelis-Menten equation using the decomposition method.
    Sonnad JR; Goudar CT
    Math Biosci Eng; 2009 Jan; 6(1):173-88. PubMed ID: 19292514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting Kinetic Isotope Effects From a Global Analysis of Reaction Progress Curves.
    Hay S
    Methods Enzymol; 2017; 596():85-111. PubMed ID: 28911785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iFIT: An automated web tool for determining enzyme-kinetic parameters based on the high-curvature region of progress curves.
    Petrič B; Goličnik M; Bavec A
    Acta Chim Slov; 2022 Jun; 69(2):478-482. PubMed ID: 35861063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme kinetics at high enzyme concentration.
    Schnell S; Maini PK
    Bull Math Biol; 2000 May; 62(3):483-99. PubMed ID: 10812718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The total quasi-steady-state approximation is valid for reversible enzyme kinetics.
    Tzafriri AR; Edelman ER
    J Theor Biol; 2004 Feb; 226(3):303-13. PubMed ID: 14643644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves.
    Duggleby RG
    Biochem J; 1985 May; 228(1):55-60. PubMed ID: 4004816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An algebraic model to determine substrate kinetic parameters by global nonlinear fit of progress curves.
    Reytor González ML; Cornell-Kennon S; Schaefer E; Kuzmič P
    Anal Biochem; 2017 Feb; 518():16-24. PubMed ID: 27823930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.