BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27744481)

  • 21. Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing.
    Booth MA; Vogel R; Curran JM; Harbison S; Travas-Sejdic J
    Biosens Bioelectron; 2013 Jul; 45():136-40. PubMed ID: 23455053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable Resistive Pulse Sensing: Better Size and Charge Measurements for Submicrometer Colloids.
    Willmott GR
    Anal Chem; 2018 Mar; 90(5):2987-2995. PubMed ID: 29441785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of induced surface charge of metal particles on particle sizing by resistive pulse sensing technique.
    Song Y; Wang C; Sun R; Pan X; Li D
    J Colloid Interface Sci; 2014 Jun; 423():20-4. PubMed ID: 24703663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resistive-Pulse Sensing and Surface Charge Analysis of a Single Nanoparticle Collision at a Conical Glass Nanopore.
    Zhou Y; Wang D; Li C; Hu P; Jin Y
    Anal Chem; 2019 Jun; 91(12):7648-7653. PubMed ID: 31091072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Positively Charged Lipid Shell Microbubbles with Tunable Resistive Pulse Sensing (TRPS) Method: A Technical Note.
    Manta S; Delalande A; Bessodes M; Bureau MF; Scherman D; Pichon C; Mignet N
    Ultrasound Med Biol; 2016 Feb; 42(2):624-30. PubMed ID: 26653937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulse Size Distributions in Tunable Resistive Pulse Sensing.
    Weatherall E; Hauer P; Vogel R; Willmott GR
    Anal Chem; 2016 Sep; 88(17):8648-56. PubMed ID: 27469286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable nanoparticle arrays at charged interfaces.
    Srivastava S; Nykypanchuk D; Fukuto M; Gang O
    ACS Nano; 2014 Oct; 8(10):9857-66. PubMed ID: 25197949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable resistive pulse sensing: potential applications in nanomedicine.
    Sivakumaran M; Platt M
    Nanomedicine (Lond); 2016 Aug; 11(16):2197-214. PubMed ID: 27480794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophoresis of concentrically and eccentrically positioned cylindrical particles in a long tube.
    Liu H; Bau HH; Hu HH
    Langmuir; 2004 Mar; 20(7):2628-39. PubMed ID: 15835131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of tunable resistive pulse sensing.
    Weatherall E; Willmott GR
    Analyst; 2015 May; 140(10):3318-34. PubMed ID: 25738184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery.
    Barrán-Berdón AL; Pozzi D; Caracciolo G; Capriotti AL; Caruso G; Cavaliere C; Riccioli A; Palchetti S; Laganà A
    Langmuir; 2013 May; 29(21):6485-94. PubMed ID: 23631648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turbulent transport of suspended particles and dispersing benthic organisms: the hitting-time distribution for the local exchange model.
    Mcnair JN
    J Theor Biol; 2000 Feb; 202(3):231-46. PubMed ID: 10660477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring aptamer-protein interactions using tunable resistive pulse sensing.
    Billinge ER; Broom M; Platt M
    Anal Chem; 2014 Jan; 86(2):1030-7. PubMed ID: 24380606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles.
    Qiu Y; Lin CY; Hinkle P; Plett TS; Yang C; Chacko JV; Digman MA; Yeh LH; Hsu JP; Siwy ZS
    ACS Nano; 2016 Sep; 10(9):8413-22. PubMed ID: 27532683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.
    Harrer S; Kim SC; Schieber C; Kannam S; Gunn N; Moore S; Scott D; Bathgate R; Skafidas S; Wagner JM
    Nanotechnology; 2015 May; 26(18):182502. PubMed ID: 25875197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability.
    Anderson W; Lane R; Korbie D; Trau M
    Langmuir; 2015 Jun; 31(23):6577-87. PubMed ID: 25970769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable Brownian vortex at the interface.
    Khan M; Sood AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041408. PubMed ID: 21599159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring surface charge movement in single elongated semiconductor nanocrystals.
    Müller J; Lupton JM; Rogach AL; Feldmann J; Talapin DV; Weller H
    Phys Rev Lett; 2004 Oct; 93(16):167402. PubMed ID: 15525031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A complementarity experiment with an interferometer at the quantum-classical boundary.
    Bertet P; Osnaghi S; Rauschenbeutel A; Nogues G; Auffeves A; Brune M; Raimond JM; Haroche S
    Nature; 2001 May; 411(6834):166-70. PubMed ID: 11346787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of vesicular stomatitis virus populations by tunable resistive pulse sensing.
    Akpinar F; Yin J
    J Virol Methods; 2015 Jun; 218():71-6. PubMed ID: 25698465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.