These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 27744683)

  • 41. Engineered Biosensors from Dimeric Ligand-Binding Domains.
    Jester BW; Tinberg CE; Rich MS; Baker D; Fields S
    ACS Synth Biol; 2018 Oct; 7(10):2457-2467. PubMed ID: 30204430
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening.
    Skrekas C; Ferreira R; David F
    Methods Mol Biol; 2022; 2513():39-57. PubMed ID: 35781199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Construction of a SV40 promoter specific artificial transcription factor].
    Zhao XH; Zhu XD; Liu J; Rao XJ; Huang PT
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):608-12. PubMed ID: 15969093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Custom-made transcriptional biosensors for metabolic engineering.
    Koch M; Pandi A; Borkowski O; Batista AC; Faulon JL
    Curr Opin Biotechnol; 2019 Oct; 59():78-84. PubMed ID: 30921678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in
    Dabirian Y; Li X; Chen Y; David F; Nielsen J; Siewers V
    ACS Synth Biol; 2019 Sep; 8(9):1968-1975. PubMed ID: 31373795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic biosensors for precise gene control and real-time monitoring of metabolites.
    Rogers JK; Guzman CD; Taylor ND; Raman S; Anderson K; Church GM
    Nucleic Acids Res; 2015 Sep; 43(15):7648-60. PubMed ID: 26152303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving the design of an oxidative stress sensing biosensor in yeast.
    Dacquay LC; McMillen DR
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33864457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosensor-based monitoring of the central metabolic pathway metabolites.
    Ding D; Li J; Bai D; Fang H; Lin J; Zhang D
    Biosens Bioelectron; 2020 Nov; 167():112456. PubMed ID: 32798802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors.
    Townshend B; Xiang JS; Manzanarez G; Hayden EJ; Smolke CD
    Nat Commun; 2021 Mar; 12(1):1437. PubMed ID: 33664255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid construction of metabolite biosensors using domain-insertion profiling.
    Nadler DC; Morgan SA; Flamholz A; Kortright KE; Savage DF
    Nat Commun; 2016 Jul; 7():12266. PubMed ID: 27470466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosensor-Based Evolution and Elucidation of a Biosynthetic Pathway in Escherichia coli.
    Liu Y; Zhuang Y; Ding D; Xu Y; Sun J; Zhang D
    ACS Synth Biol; 2017 May; 6(5):837-848. PubMed ID: 28121425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conversion of a maltose receptor into a zinc biosensor by computational design.
    Marvin JS; Hellinga HW
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4955-60. PubMed ID: 11320244
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.
    Schreiber T; Tissier A
    Methods Enzymol; 2016; 576():361-78. PubMed ID: 27480693
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zinc finger peptides for the regulation of gene expression.
    Klug A
    J Mol Biol; 1999 Oct; 293(2):215-8. PubMed ID: 10529348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. De Novo metabolic engineering and the promise of synthetic DNA.
    Klein-Marcuschamer D; Yadav VG; Ghaderi A; Stephanopoulos GN
    Adv Biochem Eng Biotechnol; 2010; 120():101-31. PubMed ID: 20186529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nucleic acid binding properties of SmZF1, a zinc finger protein of Schistosoma mansoni.
    Calzavara-Silva CE; Prosdocimi F; Abath FG; Pena SD; Franco GR
    Int J Parasitol; 2004 Oct; 34(11):1211-9. PubMed ID: 15491583
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell-free gene-regulatory network engineering with synthetic transcription factors.
    Swank Z; Laohakunakorn N; Maerkl SJ
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5892-5901. PubMed ID: 30850530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast.
    Skjoedt ML; Snoek T; Kildegaard KR; Arsovska D; Eichenberger M; Goedecke TJ; Rajkumar AS; Zhang J; Kristensen M; Lehka BJ; Siedler S; Borodina I; Jensen MK; Keasling JD
    Nat Chem Biol; 2016 Nov; 12(11):951-958. PubMed ID: 27642864
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast.
    Williams TC; Xu X; Ostrowski M; Pretorius IS; Paulsen IT
    Synth Biol (Oxf); 2017 Jan; 2(1):ysw002. PubMed ID: 32995501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.