BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27744693)

  • 1. Characterization of Cell Wall Composition of Radish (Raphanus sativus L. var. sativus) and Maturation Related Changes.
    Schäfer J; Brett A; Trierweiler B; Bunzel M
    J Agric Food Chem; 2016 Nov; 64(45):8625-8632. PubMed ID: 27744693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var. italica) stems.
    Schäfer J; Stanojlovic L; Trierweiler B; Bunzel M
    Food Res Int; 2017 Mar; 93():43-51. PubMed ID: 28290279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N; Masuda D
    J Agric Food Chem; 2016 Sep; 64(35):6745-51. PubMed ID: 27530819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Cell Wall Components and Their Modifications during Postharvest Storage of Asparagus officinalis L.: Storage-Related Changes in Dietary Fiber Composition.
    Schäfer J; Wagner S; Trierweiler B; Bunzel M
    J Agric Food Chem; 2016 Jan; 64(2):478-86. PubMed ID: 26671648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing.
    Feng H; Xu L; Wang Y; Tang M; Zhu X; Zhang W; Sun X; Nie S; Muleke EM; Liu L
    Mol Genet Genomics; 2017 Oct; 292(5):1151-1163. PubMed ID: 28667404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).
    Zhang W; Ebbs SD; Musante C; White JC; Gao C; Ma X
    J Agric Food Chem; 2015 Jan; 63(2):382-90. PubMed ID: 25531028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots.
    Hanlon PR; Barnes DM
    J Food Sci; 2011; 76(1):C185-92. PubMed ID: 21535648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium.
    Pedrero Z; Madrid Y; Cámara C
    J Agric Food Chem; 2006 Mar; 54(6):2412-7. PubMed ID: 16536627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots.
    Inoue H; Fukuoka D; Tatai Y; Kamachi H; Hayatsu M; Ono M; Suzuki S
    J Plant Res; 2013 Jan; 126(1):51-61. PubMed ID: 22644314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus).
    Dočekalová H; Škarpa P; Dočekal B
    Talanta; 2015 Mar; 134():153-157. PubMed ID: 25618652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root.
    Gancheva MS; Dodueva IE; Lebedeva MA; Tvorogova VE; Tkachenko AA; Lutova LA
    BMC Plant Biol; 2016 Jan; 16 Suppl 1(Suppl 1):7. PubMed ID: 26821718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.
    Yi G; Lim S; Chae WB; Park JE; Park HR; Lee EJ; Huh JH
    J Agric Food Chem; 2016 Jan; 64(1):61-70. PubMed ID: 26672790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil.
    Zheng RL; Li HF; Jiang RF; Zhang FS
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Six new acylated anthocyanins from red radish (Raphanus sativus).
    Tamura S; Tsuji K; Yongzhen P; Ohnishi-Kameyama M; Murakami N
    Chem Pharm Bull (Tokyo); 2010 Sep; 58(9):1259-62. PubMed ID: 20823613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturation-related changes of carrot lignins.
    Schäfer J; Trierweiler B; Bunzel M
    J Sci Food Agric; 2018 Feb; 98(3):1016-1023. PubMed ID: 28718909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a Precursor to the Blue Components Produced in the Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N
    J Nat Prod; 2016 May; 79(5):1381-7. PubMed ID: 27128155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors (
    Zhang J; Qiu X; Tan Q; Xiao Q; Mei S
    J Agric Food Chem; 2020 Dec; 68(49):14463-14470. PubMed ID: 33216541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide.
    Azam A; Khan I; Mahmood A; Hameed A
    J Sci Food Agric; 2013 Oct; 93(13):3237-44. PubMed ID: 23576218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.).
    Jang G; Lee JH; Rastogi K; Park S; Oh SH; Lee JY
    J Exp Bot; 2015 Aug; 66(15):4607-19. PubMed ID: 25979997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postharvest temperature and water status influence postharvest splitting susceptibility in summer radish (Raphanus sativus L.).
    Lockley RA; Beacham AM; Grove IG; Monaghan JM
    J Sci Food Agric; 2021 Jan; 101(2):536-541. PubMed ID: 32662095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.