These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27745543)

  • 1. An Overview of Computational and Experimental Methods for Designing Novel Proteins.
    Gulati K; Poluri KM
    Recent Pat Biotechnol; 2016; 10(3):235-263. PubMed ID: 27745543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein interfacial pocket engineering via coupled computational filtering and biological focusing criterion.
    Reza F; Zuo P; Tian J
    Ann Biomed Eng; 2007 Jun; 35(6):1026-36. PubMed ID: 17453346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rosetta:MSF: a modular framework for multi-state computational protein design.
    Löffler P; Schmitz S; Hupfeld E; Sterner R; Merkl R
    PLoS Comput Biol; 2017 Jun; 13(6):e1005600. PubMed ID: 28604768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Trends in Protein Engineering: Updates and Progress.
    Sinha R; Shukla P
    Curr Protein Pept Sci; 2019; 20(5):398-407. PubMed ID: 30451109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Engineering Approaches in the Post-Genomic Era.
    Singh RK; Lee JK; Selvaraj C; Singh R; Li J; Kim SY; Kalia VC
    Curr Protein Pept Sci; 2018; 19(1):5-15. PubMed ID: 27855603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.
    Sevy AM; Jacobs TM; Crowe JE; Meiler J
    PLoS Comput Biol; 2015 Jul; 11(7):e1004300. PubMed ID: 26147100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial design of protein sequences with applications to lattice and real proteins.
    Bhattacherjee A; Biswas P
    J Chem Phys; 2009 Sep; 131(12):125101. PubMed ID: 19791919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential implications of availability of short amino acid sequences in proteins: an old and new approach to protein decoding and design.
    Otaki JM; Gotoh T; Yamamoto H
    Biotechnol Annu Rev; 2008; 14():109-41. PubMed ID: 18606361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial protein design.
    Saven JG
    Curr Opin Struct Biol; 2002 Aug; 12(4):453-8. PubMed ID: 12163067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring Proteins to Re-Evolve Nature: A Short Review.
    Jimenez-Rosales A; Flores-Merino MV
    Mol Biotechnol; 2018 Dec; 60(12):946-974. PubMed ID: 30264233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design.
    Georgiev I; Lilien RH; Donald BR
    Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational and "irrational" design of proteins and their use in biotechnology.
    Nixon AE; Firestine SM
    IUBMB Life; 2000 Mar; 49(3):181-7. PubMed ID: 10868908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput screening for enhanced protein stability.
    Bommarius AS; Broering JM; Chaparro-Riggers JF; Polizzi KM
    Curr Opin Biotechnol; 2006 Dec; 17(6):606-10. PubMed ID: 17049838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel methods for directed evolution of enzymes: quality, not quantity.
    Lutz S; Patrick WM
    Curr Opin Biotechnol; 2004 Aug; 15(4):291-7. PubMed ID: 15296927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational protein design promises to revolutionize protein engineering.
    Alvizo O; Allen BD; Mayo SL
    Biotechniques; 2007 Jan; 42(1):31, 33, 35 passim. PubMed ID: 17269482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Protein engineering: from directed evolution to computational design].
    Qu G; Zhu T; Jiang Y; Wu B; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1843-1856. PubMed ID: 31668033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches.
    Maeda Y; Makhlynets OV; Matsui H; Korendovych IV
    Annu Rev Biomed Eng; 2016 Jul; 18():311-28. PubMed ID: 27022702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational framework to empower probabilistic protein design.
    Fromer M; Yanover C
    Bioinformatics; 2008 Jul; 24(13):i214-22. PubMed ID: 18586717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering enzymes for biocatalysis.
    Dalby PA
    Recent Pat Biotechnol; 2007; 1(1):1-9. PubMed ID: 19075829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.