BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 2774563)

  • 1. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition.
    Bindoli A; Callegaro MT; Barzon E; Benetti M; Rigobello MP
    Arch Biochem Biophys; 1997 Jun; 342(1):22-8. PubMed ID: 9185610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site.
    Lê Quôc K; Lê Quôc D
    Arch Biochem Biophys; 1988 Sep; 265(2):249-57. PubMed ID: 2844116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition.
    Andreu GL; Delgado R; Velho JA; Curti C; Vercesi AE
    Arch Biochem Biophys; 2005 Jul; 439(2):184-93. PubMed ID: 15979560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biphasic oxidation of mitochondrial NAD(P)H.
    Lemeshko VV
    Biochem Biophys Res Commun; 2002 Feb; 291(1):170-5. PubMed ID: 11829479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore.
    Zago EB; Castilho RF; Vercesi AE
    FEBS Lett; 2000 Jul; 478(1-2):29-33. PubMed ID: 10922464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.
    Lehninger AL; Vercesi A; Bababunmi EA
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1690-4. PubMed ID: 25436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites.
    Costantini P; Chernyak BV; Petronilli V; Bernardi P
    J Biol Chem; 1996 Mar; 271(12):6746-51. PubMed ID: 8636095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria.
    Vercesi AE
    Arch Biochem Biophys; 1987 Jan; 252(1):171-8. PubMed ID: 3813533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible participation of membrane thiol groups on the mechanism of NAD(P)+-stimulated Ca2+ efflux from mitochondria.
    Vercesi AE
    Biochem Biophys Res Commun; 1984 Feb; 119(1):305-10. PubMed ID: 6704122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of rat liver mitochondrial permeability transition by respiratory substrates.
    Rigobello MP; Turcato F; Bindoli A
    Arch Biochem Biophys; 1995 May; 319(1):225-30. PubMed ID: 7771788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria.
    Beatrice MC; Palmer JW; Pfeiffer DR
    J Biol Chem; 1980 Sep; 255(18):8663-71. PubMed ID: 7410387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition.
    Kowaltowski AJ; Vercesi AE; Castilho RF
    Biochim Biophys Acta; 1997 Feb; 1318(3):395-402. PubMed ID: 9048976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites.
    Chernyak BV; Bernardi P
    Eur J Biochem; 1996 Jun; 238(3):623-30. PubMed ID: 8706660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of mitochondrial Ca2+ efflux by NADP+ with maintenance of respiratory control.
    Vercesi AE
    An Acad Bras Cienc; 1985 Sep; 57(3):369-75. PubMed ID: 3832980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening.
    Puntel RL; Roos DH; Folmer V; Nogueira CW; Galina A; Aschner M; Rocha JB
    Toxicol Sci; 2010 Sep; 117(1):133-43. PubMed ID: 20573786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis.
    Weis M; Kass GE; Orrenius S; Moldéus P
    J Biol Chem; 1992 Jan; 267(2):804-9. PubMed ID: 1730671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory action of oxaloacetate on succinate oxidation in rat-liver mitochondria and the mechanism of its reversal.
    Wojtczak AB
    Biochim Biophys Acta; 1969 Jan; 172(1):52-65. PubMed ID: 4387597
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status.
    Reed DJ; Savage MK
    Biochim Biophys Acta; 1995 May; 1271(1):43-50. PubMed ID: 7599224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.