These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 27745973)
1. Simulating pathways of subsurface oil in the Faroe-Shetland Channel using an ocean general circulation model. Main CE; Yool A; Holliday NP; Popova EE; Jones DOB; Ruhl HA Mar Pollut Bull; 2017 Jan; 114(1):315-326. PubMed ID: 27745973 [TBL] [Abstract][Full Text] [Related]
2. Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders. Angelova AG; Berx B; Bresnan E; Joye SB; Free A; Gutierrez T mBio; 2021 Mar; 12(2):. PubMed ID: 33727364 [TBL] [Abstract][Full Text] [Related]
3. Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel). Gontikaki E; Potts LD; Anderson JA; Witte U J Appl Microbiol; 2018 Oct; 125(4):1040-1053. PubMed ID: 29928773 [TBL] [Abstract][Full Text] [Related]
4. Current status of deepwater oil spill modelling in the Faroe-Shetland Channel, Northeast Atlantic, and future challenges. Gallego A; O'Hara Murray R; Berx B; Turrell WR; Beegle-Krause CJ; Inall M; Sherwin T; Siddorn J; Wakelin S; Vlasenko V; Hole LR; Dagestad KF; Rees J; Short L; Rønningen P; Main CE; Legrand S; Gutierrez T; Witte U; Mulanaphy N Mar Pollut Bull; 2018 Feb; 127():484-504. PubMed ID: 29475689 [TBL] [Abstract][Full Text] [Related]
5. Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Spier C; Stringfellow WT; Hazen TC; Conrad M Environ Pollut; 2013 Feb; 173():224-30. PubMed ID: 23202654 [TBL] [Abstract][Full Text] [Related]
6. Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. King GM; Kostka JE; Hazen TC; Sobecky PA Ann Rev Mar Sci; 2015; 7():377-401. PubMed ID: 25251273 [TBL] [Abstract][Full Text] [Related]
7. Modelling the long-term evolution of worst-case Arctic oil spills. Blanken H; Tremblay LB; Gaskin S; Slavin A Mar Pollut Bull; 2017 Mar; 116(1-2):315-331. PubMed ID: 28100401 [TBL] [Abstract][Full Text] [Related]
8. Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Paris CB; Hénaff ML; Aman ZM; Subramaniam A; Helgers J; Wang DP; Kourafalou VH; Srinivasan A Environ Sci Technol; 2012 Dec; 46(24):13293-302. PubMed ID: 23167517 [TBL] [Abstract][Full Text] [Related]
9. Modelling oil plumes from subsurface spills. Lardner R; Zodiatis G Mar Pollut Bull; 2017 Nov; 124(1):94-101. PubMed ID: 28709523 [TBL] [Abstract][Full Text] [Related]
10. Macondo oil in deep-sea sediments: Part 2 - Distribution and distinction from background and natural oil seeps. Stout SA; Payne JR; Ricker RW; Baker G; Lewis C Mar Pollut Bull; 2016 Oct; 111(1-2):381-401. PubMed ID: 27509822 [TBL] [Abstract][Full Text] [Related]
11. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Camilli R; Reddy CM; Yoerger DR; Van Mooy BA; Jakuba MV; Kinsey JC; McIntyre CP; Sylva SP; Maloney JV Science; 2010 Oct; 330(6001):201-4. PubMed ID: 20724584 [TBL] [Abstract][Full Text] [Related]
12. Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects. Li Z; Spaulding M; French McCay D; Crowley D; Payne JR Mar Pollut Bull; 2017 Jan; 114(1):247-257. PubMed ID: 27650116 [TBL] [Abstract][Full Text] [Related]
13. Increased dispersion of oil from a deep water seabed release by energetic mesoscale eddies. Gilchrist RM; Hall RA; Bacon JC; Rees JM; Graham JA Mar Pollut Bull; 2020 Jul; 156():111258. PubMed ID: 32510400 [TBL] [Abstract][Full Text] [Related]
14. Simulation of Hu P; Dubinsky EA; Probst AJ; Wang J; Sieber CMK; Tom LM; Gardinali PR; Banfield JF; Atlas RM; Andersen GL Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7432-7437. PubMed ID: 28652349 [TBL] [Abstract][Full Text] [Related]
15. Fate of dispersants associated with the deepwater horizon oil spill. Kujawinski EB; Kido Soule MC; Valentine DL; Boysen AK; Longnecker K; Redmond MC Environ Sci Technol; 2011 Feb; 45(4):1298-306. PubMed ID: 21265576 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation of marine oil spills in the Arctic with a Greenland perspective. Vergeynst L; Wegeberg S; Aamand J; Lassen P; Gosewinkel U; Fritt-Rasmussen J; Gustavson K; Mosbech A Sci Total Environ; 2018 Jun; 626():1243-1258. PubMed ID: 29898532 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of dispersed oil in Arctic seawater at -1°C. McFarlin KM; Prince RC; Perkins R; Leigh MB PLoS One; 2014; 9(1):e84297. PubMed ID: 24416211 [TBL] [Abstract][Full Text] [Related]
18. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Hazen TC; Dubinsky EA; DeSantis TZ; Andersen GL; Piceno YM; Singh N; Jansson JK; Probst A; Borglin SE; Fortney JL; Stringfellow WT; Bill M; Conrad ME; Tom LM; Chavarria KL; Alusi TR; Lamendella R; Joyner DC; Spier C; Baelum J; Auer M; Zemla ML; Chakraborty R; Sonnenthal EL; D'haeseleer P; Holman HY; Osman S; Lu Z; Van Nostrand JD; Deng Y; Zhou J; Mason OU Science; 2010 Oct; 330(6001):204-8. PubMed ID: 20736401 [TBL] [Abstract][Full Text] [Related]
19. Comment on "Evolution of the macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport". Adams EE; Socolofsky SA; Boufadel M Environ Sci Technol; 2013 Oct; 47(20):11905. PubMed ID: 24025026 [No Abstract] [Full Text] [Related]
20. Simulation of scenarios of oil droplet formation from the Deepwater Horizon blowout. Zhao L; Boufadel MC; Adams E; Socolofsky SA; King T; Lee K; Nedwed T Mar Pollut Bull; 2015 Dec; 101(1):304-319. PubMed ID: 26581815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]