BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27746099)

  • 1. In silico investigation of factors affecting the MV imaging performance of a novel water-equivalent EPID.
    Blake SJ; Cheng Z; Atakaramians S; Meikle S; Lu M; Vial P; Kuncic Z
    Phys Med; 2016 Dec; 32(12):1819-1826. PubMed ID: 27746099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high DQE water-equivalent EPID employing an array of plastic-scintillating fibers for simultaneous imaging and dosimetry in radiotherapy.
    Blake SJ; Cheng Z; McNamara A; Lu M; Vial P; Kuncic Z
    Med Phys; 2018 May; 45(5):2154-2168. PubMed ID: 29577337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of the imaging and dosimetric characteristics of an electronic portal imaging device employing plastic scintillating fibres using Monte Carlo simulations.
    Blake SJ; McNamara AL; Vial P; Holloway L; Kuncic Z
    Phys Med Biol; 2014 Nov; 59(22):6827-40. PubMed ID: 25332310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a novel EPID designed for simultaneous imaging and dose verification in radiotherapy.
    Blake SJ; McNamara AL; Deshpande S; Holloway L; Greer PB; Kuncic Z; Vial P
    Med Phys; 2013 Sep; 40(9):091902. PubMed ID: 24007153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of optical transport effects on EPID dosimetry using Geant4.
    Blake SJ; Vial P; Holloway L; Greer PB; McNamara AL; Kuncic Z
    Med Phys; 2013 Apr; 40(4):041708. PubMed ID: 23556878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers.
    Teymurazyan A; Pang G
    Med Phys; 2012 Mar; 39(3):1518-29. PubMed ID: 22380384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing a novel scintillating glass for application to megavoltage cone-beam computed tomography.
    Hu YH; Shedlock D; Wang A; Rottmann J; Baturin P; Myronakis M; Huber P; Fueglistaller R; Shi M; Morf D; Star-Lack J; Berbeco RI
    Med Phys; 2019 Mar; 46(3):1323-1330. PubMed ID: 30586163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo study of the impact of phosphor optical properties on EPID imaging performance.
    Shi M; Myronakis M; Hu YH; Morf D; Rottmann J; Berbeco R
    Phys Med Biol; 2018 Aug; 63(16):165013. PubMed ID: 30051879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel EPID design for enhanced contrast and detective quantum efficiency.
    Rottmann J; Morf D; Fueglistaller R; Zentai G; Star-Lack J; Berbeco R
    Phys Med Biol; 2016 Sep; 61(17):6297-306. PubMed ID: 27494207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(TI) detector.
    Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Wang Y; Li Y; Du H; Perna L
    Med Phys; 2006 Apr; 33(4):1053-66. PubMed ID: 16696482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel multilayer MV imager computational model for component optimization.
    Myronakis M; Star-Lack J; Baturin P; Rottmann J; Morf D; Wang A; Hu YH; Shedlock D; Berbeco RI
    Med Phys; 2017 Aug; 44(8):4213-4222. PubMed ID: 28555935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SU-E-I-109: Sensitivity Analysis of an Electronic Portal Imaging Device Monte Carlo Model to Variations in Optical Transport Parameters.
    Blake S; Vial P; Holloway L; McNamara A; Greer P; Kuncic Z
    Med Phys; 2012 Jun; 39(6Part5):3650. PubMed ID: 28517636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs.
    Lee S; Yan G; Bassett P; Gopal A; Samant S
    Med Phys; 2016 Sep; 43(9):4996. PubMed ID: 27587030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel high quantum efficiency MV x-ray detector for image-guided radiotherapy: A feasibility study.
    Liu J; Xu Y; Teymurazyan A; Papandreou Z; Pang G
    Med Phys; 2020 Jan; 47(1):152-163. PubMed ID: 31682020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for quantification of beam's-eye-view tumor tracking performance.
    Hu YH; Myronakis M; Rottmann J; Wang A; Morf D; Shedlock D; Baturin P; Star-Lack J; Berbeco R
    Med Phys; 2017 Nov; 44(11):5650-5659. PubMed ID: 28887836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portal MV imaging with thin-film high-energy current X-ray detectors: A Monte Carlo study.
    Liu B; Zygmanski P; Sajo E
    Med Phys; 2017 Dec; 44(12):6128-6137. PubMed ID: 28976578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging.
    Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Li Y; Su Z; Wang Y; Yamamoto J; Du H; Cunningham I; Klugerman M; Shah K
    Med Phys; 2005 Oct; 32(10):3067-83. PubMed ID: 16279059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.
    Samant SS; Gopal A
    Med Phys; 2006 Aug; 33(8):2783-91. PubMed ID: 16964854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.
    Samant SS; Gopal A
    Med Phys; 2006 Sep; 33(9):3557-67. PubMed ID: 17022252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media.
    Yoon J; Jung JW; Kim JO; Yeo I
    Med Phys; 2016 May; 43(5):2242. PubMed ID: 27147336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.