BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27746304)

  • 1. A new biological recovery approach for PHA using mealworm, Tenebrio molitor.
    Murugan P; Han L; Gan CY; Maurer FH; Sudesh K
    J Biotechnol; 2016 Dec; 239():98-105. PubMed ID: 27746304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm.
    Ong SY; Kho HP; Riedel SL; Kim SW; Gan CY; Taylor TD; Sudesh K
    J Biotechnol; 2018 Jan; 265():31-39. PubMed ID: 29101024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol.
    Mohammadi M; Hassan MA; Phang LY; Ariffin H; Shirai Y; Ando Y
    Biotechnol Lett; 2012 Feb; 34(2):253-9. PubMed ID: 22038551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms.
    Zainab-L I; Sudesh K
    J Biotechnol; 2019 Nov; 305():35-42. PubMed ID: 31493421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy.
    Mravec F; Obruca S; Krzyzanek V; Sedlacek P; Hrubanova K; Samek O; Kucera D; Benesova P; Nebesarova J
    FEMS Microbiol Lett; 2016 May; 363(10):. PubMed ID: 27190240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator.
    Anis SN; Iqbal NM; Kumar S; Al-Ashraf A
    Bioengineered; 2013; 4(2):115-8. PubMed ID: 23018620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions.
    Nygaard D; Yashchuk O; Hermida ÉB
    J Basic Microbiol; 2021 Sep; 61(9):825-834. PubMed ID: 34342882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of mealworms used in polyhydroxyalkanoate/bioplastic recovery as red hybrid tilapia (Oreochromis sp.) feed ingredient.
    Zainab-L I; Ng WK; Sudesh K
    Sci Rep; 2022 Jun; 12(1):9598. PubMed ID: 35689011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment.
    Arikawa H; Sato S; Fujiki T; Matsumoto K
    J Biosci Bioeng; 2017 Aug; 124(2):250-254. PubMed ID: 28456470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs).
    Yang YH; Brigham C; Willis L; Rha C; Sinskey A
    Biotechnol Lett; 2011 May; 33(5):937-42. PubMed ID: 21207109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.
    Slaninova E; Sedlacek P; Mravec F; Mullerova L; Samek O; Koller M; Hesko O; Kucera D; Marova I; Obruca S
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1923-1931. PubMed ID: 29349494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state.
    Choi SY; Oh J; Jung J; Park Y; Lee SY
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34312231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of enzymes in extraction of polyhydroxyalkanoates produced by Cupriavidus necator.
    Neves A; Müller J
    Biotechnol Prog; 2012; 28(6):1575-80. PubMed ID: 22915526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel unexpected functions of PHA granules.
    Obruca S; Sedlacek P; Slaninova E; Fritz I; Daffert C; Meixner K; Sedrlova Z; Koller M
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4795-4810. PubMed ID: 32303817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on the relation between poly(3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16.
    Arikawa H; Sato S; Fujiki T; Matsumoto K
    J Biotechnol; 2016 Jun; 227():94-102. PubMed ID: 27059479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a rapid method to isolate polyhydroxyalkanoates from bacteria for screening studies.
    Vizcaino-Caston I; Kelly CA; Fitzgerald AVL; Leeke GA; Jenkins M; Overton TW
    J Biosci Bioeng; 2016 Jan; 121(1):101-104. PubMed ID: 26143034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.
    Passanha P; Esteves SR; Kedia G; Dinsdale RM; Guwy AJ
    Bioresour Technol; 2013 Nov; 147():345-352. PubMed ID: 23999264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions.
    Novackova I; Hrabalova V; Slaninova E; Sedlacek P; Samek O; Koller M; Krzyzanek V; Hrubanova K; Mrazova K; Nebesarova J; Obruca S
    Int J Biol Macromol; 2022 May; 206():977-989. PubMed ID: 35314264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose.
    Povolo S; Toffano P; Basaglia M; Casella S
    Bioresour Technol; 2010 Oct; 101(20):7902-7. PubMed ID: 20537531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator.
    Arumugam A; Senthamizhan SG; Ponnusami V; Sudalai S
    Int J Biol Macromol; 2018 Jun; 112():598-607. PubMed ID: 29408394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.