These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27746307)

  • 21. Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains.
    Yin S; Zhou H; Xiao X; Lang T; Liang J; Wang C
    Curr Microbiol; 2015 May; 70(5):762-7. PubMed ID: 25681107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteome reallocation enables the selective de novo biosynthesis of non-linear, branched-chain acetate esters.
    Seo H; Giannone RJ; Yang YH; Trinh CT
    Metab Eng; 2022 Sep; 73():38-49. PubMed ID: 35561848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.
    Shi S; Si T; Liu Z; Zhang H; Ang EL; Zhao H
    Sci Rep; 2016 May; 6():25675. PubMed ID: 27161023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.
    Li X; Guo D; Cheng Y; Zhu F; Deng Z; Liu T
    Biotechnol Bioeng; 2014 Sep; 111(9):1841-52. PubMed ID: 24752690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of
    Siripong W; Wolf P; Kusumoputri TP; Downes JJ; Kocharin K; Tanapongpipat S; Runguphan W
    Biotechnol Biofuels; 2018; 11():1. PubMed ID: 29321810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase ethyl acetate production in Saccharomyces cerevisiae by genetic engineering of ethyl acetate metabolic pathway.
    Dong J; Wang P; Fu X; Dong S; Li X; Xiao D
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):801-808. PubMed ID: 30810845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides.
    Wang J; Mahajani M; Jackson SL; Yang Y; Chen M; Ferreira EM; Lin Y; Yan Y
    Metab Eng; 2017 Nov; 44():89-99. PubMed ID: 28943460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.
    Kim B; Cho BR; Hahn JS
    Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae.
    Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH
    J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.
    Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S
    Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.
    ter Schure EG; Flikweert MT; van Dijken JP; Pronk JT; Verrips CT
    Appl Environ Microbiol; 1998 Apr; 64(4):1303-7. PubMed ID: 9546164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Clostridium autoethanogenum for ethyl acetate production from CO.
    Dykstra JC; van Oort J; Yazdi AT; Vossen E; Patinios C; van der Oost J; Sousa DZ; Kengen SWM
    Microb Cell Fact; 2022 Nov; 21(1):243. PubMed ID: 36419165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae.
    Kim S; Bae SJ; Hahn JS
    Sci Rep; 2016 Apr; 6():24145. PubMed ID: 27052099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.
    Wenning L; Yu T; David F; Nielsen J; Siewers V
    Biotechnol Bioeng; 2017 May; 114(5):1025-1035. PubMed ID: 27858995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae.
    Dickinson JR; Harrison SJ; Hewlins MJ
    J Biol Chem; 1998 Oct; 273(40):25751-6. PubMed ID: 9748245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae.
    Rodriguez S; Denby CM; Van Vu T; Baidoo EE; Wang G; Keasling JD
    Microb Cell Fact; 2016 Mar; 15():48. PubMed ID: 26939608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.