These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27746361)
1. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model. Meliga SC; Coffey JW; Crichton ML; Flaim C; Veidt M; Kendall MAF Acta Biomater; 2017 Jan; 48():341-356. PubMed ID: 27746361 [TBL] [Abstract][Full Text] [Related]
2. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
3. The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Crichton ML; Donose BC; Chen X; Raphael AP; Huang H; Kendall MA Biomaterials; 2011 Jul; 32(20):4670-81. PubMed ID: 21458062 [TBL] [Abstract][Full Text] [Related]
4. Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model. Liu H; Sun W Comput Methods Biomech Biomed Engin; 2016; 19(11):1171-80. PubMed ID: 26692168 [TBL] [Abstract][Full Text] [Related]
5. A computational fluid-structure interaction model of the blood flow in the healthy and varicose saphenous vein. Razaghi R; Karimi A; Rahmani S; Navidbakhsh M Vascular; 2016 Jun; 24(3):254-63. PubMed ID: 26123058 [TBL] [Abstract][Full Text] [Related]
6. A structural fingertip model for simulating of the biomechanics of tactile sensation. Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184 [TBL] [Abstract][Full Text] [Related]
7. Characterising the material properties at the interface between skin and a skin vaccination microprojection device. Crichton ML; Archer-Jones C; Meliga S; Edwards G; Martin D; Huang H; Kendall MA Acta Biomater; 2016 May; 36():186-94. PubMed ID: 26956913 [TBL] [Abstract][Full Text] [Related]
8. A finite element model of skin deformation. III. The finite element model. Larrabee WF; Galt JA Laryngoscope; 1986 Apr; 96(4):413-9. PubMed ID: 3959702 [TBL] [Abstract][Full Text] [Related]
9. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
10. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics. Oftadeh R; Connizzo BK; Nia HT; Ortiz C; Grodzinsky AJ Acta Biomater; 2018 Apr; 70():249-259. PubMed ID: 29425716 [TBL] [Abstract][Full Text] [Related]
11. The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Crichton ML; Ansaldo A; Chen X; Prow TW; Fernando GJ; Kendall MA Biomaterials; 2010 Jun; 31(16):4562-72. PubMed ID: 20226519 [TBL] [Abstract][Full Text] [Related]
12. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. Groves RB; Coulman SA; Birchall JC; Evans SL J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398 [TBL] [Abstract][Full Text] [Related]
13. Heel skin stiffness effect on the hind foot biomechanics during heel strike. Gu Y; Li J; Ren X; Lake MJ; Zeng Y Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997 [TBL] [Abstract][Full Text] [Related]
14. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Shu W; Heimark H; Bertollo N; Tobin DJ; O'Cearbhaill ED; Annaidh AN Acta Biomater; 2021 Nov; 135():403-413. PubMed ID: 34492370 [TBL] [Abstract][Full Text] [Related]
15. Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device. Iivarinen JT; Korhonen RK; Julkunen P; Jurvelin JS Med Eng Phys; 2011 Dec; 33(10):1245-53. PubMed ID: 21696992 [TBL] [Abstract][Full Text] [Related]
16. A new method for determining the ogden parameters of soft materials using indentation experiments. Li L; Masen M J Mech Behav Biomed Mater; 2024 Jul; 155():106574. PubMed ID: 38761525 [TBL] [Abstract][Full Text] [Related]
17. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation. Suzuki R; Ito K; Lee T; Ogihara N J Mech Behav Biomed Mater; 2017 Jan; 65():753-760. PubMed ID: 27764748 [TBL] [Abstract][Full Text] [Related]
18. A finite element model of skin deformation. I. Biomechanics of skin and soft tissue: a review. Larrabee WF Laryngoscope; 1986 Apr; 96(4):399-405. PubMed ID: 3959700 [TBL] [Abstract][Full Text] [Related]
19. Multi-scale finite element analyses for stress and strain evaluations of braid fibril artificial blood vessel and smooth muscle cell. Nakamachi E; Uchida T; Kuramae H; Morita Y Int J Numer Method Biomed Eng; 2014 Aug; 30(8):796-813. PubMed ID: 24599892 [TBL] [Abstract][Full Text] [Related]
20. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]