These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27746683)

  • 21. A Ready-to-Use Single- and Duplex-TaqMan-qPCR Assay to Detect and Quantify the Biocontrol Agents
    Gerin D; Pollastro S; Raguseo C; De Miccolis Angelini RM; Faretra F
    Front Microbiol; 2018; 9():2073. PubMed ID: 30233545
    [No Abstract]   [Full Text] [Related]  

  • 22. Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain.
    Rinu K; Sati P; Pandey A
    J Basic Microbiol; 2014 May; 54(5):408-17. PubMed ID: 23564225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological Control and Plant Growth Promotion Properties of Volatile Organic Compound-Producing Antagonistic
    Joo JH; Hussein KA
    Front Plant Sci; 2022; 13():897668. PubMed ID: 35958189
    [No Abstract]   [Full Text] [Related]  

  • 24. Survey and Identification of Date Palm Pathogens and Indigenous Biocontrol Agents.
    Nishad R; Ahmed TA
    Plant Dis; 2020 Sep; 104(9):2498-2508. PubMed ID: 32631200
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Dini I; Marra R; Cavallo P; Pironti A; Sepe I; Troisi J; Scala G; Lombari P; Vinale F
    Metabolites; 2021 Mar; 11(4):. PubMed ID: 33807300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum.
    El-Debaiky SA
    Microb Pathog; 2017 Dec; 113():135-143. PubMed ID: 29074431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism.
    Zeilinger S; Omann M
    Gene Regul Syst Bio; 2007 Nov; 1():227-34. PubMed ID: 19936091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathgens.
    Zhang S; Xu B; Zhang J; Gan Y
    Pestic Biochem Physiol; 2018 May; 147():59-66. PubMed ID: 29933994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular interaction between plants and
    Dutta P; Mahanta M; Singh SB; Thakuria D; Deb L; Kumari A; Upamanya GK; Boruah S; Dey U; Mishra AK; Vanlaltani L; VijayReddy D; Heisnam P; Pandey AK
    Front Plant Sci; 2023; 14():1145715. PubMed ID: 37255560
    [No Abstract]   [Full Text] [Related]  

  • 30. Endophytic
    Park YH; Chandra Mishra R; Yoon S; Kim H; Park C; Seo ST; Bae H
    J Ginseng Res; 2019 Jul; 43(3):408-420. PubMed ID: 31308813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of lytic enzymes and secondary metabolites produced by Trichoderma spp. in the biological control of Pythium myriotylum.
    Tchameni SN; Cotârleț M; Ghinea IO; Bedine MAB; Sameza ML; Borda D; Bahrim G; Dinică RM
    Int Microbiol; 2020 May; 23(2):179-188. PubMed ID: 31267375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Microbial distribution and 16S rRNA diversity in the rhizosphere soil of Panax notoginseng].
    Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):205-13. PubMed ID: 25958701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii.
    Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K
    J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological Control and Plant Growth Promotion by Volatile Organic Compounds of
    You J; Li G; Li C; Zhu L; Yang H; Song R; Gu W
    J Fungi (Basel); 2022 Jan; 8(2):. PubMed ID: 35205885
    [No Abstract]   [Full Text] [Related]  

  • 35. Potential biocontrol efficiency of
    Liu Y; He P; He P; Munir S; Ahmed A; Wu Y; Yang Y; Lu J; Wang J; Yang J; Pan X; Tian Y; He Y
    Front Microbiol; 2022; 13():974024. PubMed ID: 36147847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus
    Du FY; Ju GL; Xiao L; Zhou YM; Wu X
    Mar Drugs; 2020 Mar; 18(3):. PubMed ID: 32188169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volatile Organic Compound from
    Ruangwong OU; Wonglom P; Suwannarach N; Kumla J; Thaochan N; Chomnunti P; Pitija K; Sunpapao A
    J Fungi (Basel); 2021 Mar; 7(3):. PubMed ID: 33807949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Vitro and in Planta Evaluation of
    Chou H; Xiao YT; Tsai JN; Li TT; Wu HY; Liu LD; Tzeng DS; Chung CL
    Plant Dis; 2019 Nov; 103(11):2733-2741. PubMed ID: 31483183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and Characterization of New Phenazine Metabolites with Antifungal Activity against Root-Rot Pathogens of
    Chen X; Hu LF; Huang XS; Zhao LX; Miao CP; Chen YW; Xu LH; Han L; Li YQ
    J Agric Food Chem; 2019 Oct; 67(41):11403-11407. PubMed ID: 31509401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring Antifungal Agents of
    Ma YN; Chen CJ; Li QQ; Xu FR; Cheng YX; Dong X
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30626142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.