These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 27746810)
1. Comparative Transcriptomic Analysis of Two Wang J; Singh SK; Du C; Li C; Fan J; Pattanaik S; Yuan L Front Plant Sci; 2016; 7():1498. PubMed ID: 27746810 [TBL] [Abstract][Full Text] [Related]
2. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
3. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus. Xiao Z; Li N; Wang S; Sun J; Zhang L; Zhang C; Yang H; Zhao H; Yang B; Wei L; Du H; Qu C; Lu K; Li J Biochem Genet; 2019 Dec; 57(6):781-800. PubMed ID: 31011871 [TBL] [Abstract][Full Text] [Related]
4. Comparative Transcriptomics Analysis of Brassica napus L. during Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation. Liao P; Woodfield HK; Harwood JL; Chye ML; Scofield S Plant Cell Physiol; 2019 Dec; 60(12):2812-2825. PubMed ID: 31504915 [TBL] [Abstract][Full Text] [Related]
5. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712 [TBL] [Abstract][Full Text] [Related]
6. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. Shen E; Zhu X; Hua S; Chen H; Ye C; Zhou L; Liu Q; Zhu QH; Fan L; Chen X BMC Genomics; 2018 Oct; 19(1):745. PubMed ID: 30314449 [TBL] [Abstract][Full Text] [Related]
9. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol. Aznar-Moreno J; Denolf P; Van Audenhove K; De Bodt S; Engelen S; Fahy D; Wallis JG; Browse J J Exp Bot; 2015 Oct; 66(20):6497-506. PubMed ID: 26195728 [TBL] [Abstract][Full Text] [Related]
10. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Zhang K; He J; Yin Y; Chen K; Deng X; Yu P; Li H; Zhao W; Yan S; Li M Biotechnol Biofuels Bioprod; 2022 Aug; 15(1):83. PubMed ID: 35962411 [TBL] [Abstract][Full Text] [Related]
11. Decreased seed oil production in FUSCA3 Brassica napus mutant plants. Elahi N; Duncan RW; Stasolla C Plant Physiol Biochem; 2015 Nov; 96():222-30. PubMed ID: 26302483 [TBL] [Abstract][Full Text] [Related]
12. New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. Wang X; Long Y; Yin Y; Zhang C; Gan L; Liu L; Yu L; Meng J; Li M BMC Plant Biol; 2015 Mar; 15():91. PubMed ID: 25888376 [TBL] [Abstract][Full Text] [Related]
13. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. Yu L; Liu D; Yin F; Yu P; Lu S; Zhang Y; Zhao H; Lu C; Yao X; Dai C; Yang QY; Guo L BMC Biol; 2023 Sep; 21(1):202. PubMed ID: 37775748 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic Analysis of Seed Coats in Yellow-Seeded Hong M; Hu K; Tian T; Li X; Chen L; Zhang Y; Yi B; Wen J; Ma C; Shen J; Fu T; Tu J Front Plant Sci; 2017; 8():1674. PubMed ID: 29051765 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide mining and comparative analysis of fatty acid elongase gene family in Brassica napus and its progenitors. Xue Y; Jiang J; Yang X; Jiang H; Du Y; Liu X; Xie R; Chai Y Gene; 2020 Jul; 747():144674. PubMed ID: 32304781 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional regulation of transcription factor genes WRI1 and LAFL during Brassica napus seed development. Han X; Peng Y; Yin S; Zhao H; Zong Z; Tan Z; Zhang Y; Ma W; Guo L Plant Physiol; 2024 Jul; ():. PubMed ID: 39041422 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Chen K; Yin Y; Ding Y; Chao H; Li M Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835614 [No Abstract] [Full Text] [Related]
18. Comparative transcriptomic analysis provides insights into the genetic networks regulating oil differential production in oil crops. Chen J; Hu Y; Zhao T; Huang C; Chen J; He L; Dai F; Chen S; Wang L; Jin S; Zhang T BMC Biol; 2024 May; 22(1):110. PubMed ID: 38735918 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. Basnet RK; Moreno-Pachon N; Lin K; Bucher J; Visser RG; Maliepaard C; Bonnema G BMC Genomics; 2013 Dec; 14(1):840. PubMed ID: 24289287 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. Wang J; Wang X; Geng S; Singh SK; Wang Y; Pattanaik S; Yuan L Planta; 2018 Jul; 248(1):171-182. PubMed ID: 29644447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]