BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27748408)

  • 1. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response.
    Yuan LL; Zhang M; Yan X; Bian YW; Zhen SM; Yan YM
    Sci Rep; 2016 Oct; 6():35280. PubMed ID: 27748408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress.
    Lv DW; Subburaj S; Cao M; Yan X; Li X; Appels R; Sun DF; Ma W; Yan YM
    Mol Cell Proteomics; 2014 Feb; 13(2):632-52. PubMed ID: 24335353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L.
    Lv DW; Li X; Zhang M; Gu AQ; Zhen SM; Wang C; Li XH; Yan YM
    BMC Genomics; 2014 May; 15(1):375. PubMed ID: 24885693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Rubisco activase gene expression and polypeptide content in Brachypodium distachyon.
    Bayramov S; Guliyev N
    Plant Physiol Biochem; 2014 Aug; 81():61-6. PubMed ID: 24521715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses.
    Cheng ZW; Chen ZY; Yan X; Bian YW; Deng X; Yan YM
    J Proteomics; 2018 Jan; 170():1-13. PubMed ID: 28986270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.).
    Zhang M; Lv D; Ge P; Bian Y; Chen G; Zhu G; Li X; Yan Y
    J Proteomics; 2014 Sep; 109():290-308. PubMed ID: 25065648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress.
    Bian YW; Lv DW; Cheng ZW; Gu AQ; Cao H; Yan YM
    J Proteomics; 2015 Oct; 128():388-402. PubMed ID: 26344133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Proteomics Reveals that Phosphorylation of β Carbonic Anhydrase 1 Might be Important for Adaptation to Drought Stress in Brassica napus.
    Wang L; Jin X; Li Q; Wang X; Li Z; Wu X
    Sci Rep; 2016 Dec; 6():39024. PubMed ID: 27966654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress.
    Tatli O; Sogutmaz Ozdemir B; Dinler Doganay G
    Plant Mol Biol; 2017 Aug; 94(6):609-623. PubMed ID: 28647905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots.
    Sun H; Xia B; Wang X; Gao F; Zhou Y
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery.
    Bian Y; Deng X; Yan X; Zhou J; Yuan L; Yan Y
    Sci Rep; 2017 Apr; 7():46183. PubMed ID: 28387352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of the Brachypodium distachyon (L.) P. Beauv. Hsp90 gene family reveals molecular evolution and expression profiling under drought and salt stresses.
    Zhang M; Shen Z; Meng G; Lu Y; Wang Y
    PLoS One; 2017; 12(12):e0189187. PubMed ID: 29216330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.
    Zhu G; Chen G; Zhu J; Zhu Y; Lu X; Li X; Hu Y; Yan Y
    PLoS One; 2015; 10(10):e0139794. PubMed ID: 26444425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions.
    Zhang M; Ma CY; Lv DW; Zhen SM; Li XH; Yan YM
    J Proteome Res; 2014 Oct; 13(10):4281-97. PubMed ID: 25145454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery.
    Hao P; Zhu J; Gu A; Lv D; Ge P; Chen G; Li X; Yan Y
    Proteomics; 2015 May; 15(9):1544-63. PubMed ID: 25546360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.
    Chen Z; Zhu D; Wu J; Cheng Z; Yan X; Deng X; Yan Y
    Sci Rep; 2018 May; 8(1):7790. PubMed ID: 29773844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon.
    Yang L; You J; Wang Y; Li J; Quan W; Yin M; Wang Q; Chan Z
    Plant Physiol Biochem; 2017 Aug; 117():1-11. PubMed ID: 28575641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural variation of drought response in Brachypodium distachyon.
    Luo N; Liu J; Yu X; Jiang Y
    Physiol Plant; 2011 Jan; 141(1):19-29. PubMed ID: 20875057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Over-expression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon.
    Yoon JS; Kim JY; Lee MB; Seo YW
    Plant Cell Rep; 2019 Sep; 38(9):1109-1125. PubMed ID: 31134348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of
    Liu H; Wang FF; Peng XJ; Huang JH; Shen SH
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.