BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27748408)

  • 21. Drought-inducible changes in the histone modification H3K9ac are associated with drought-responsive gene expression in Brachypodium distachyon.
    Song J; Henry H; Tian L
    Plant Biol (Stuttg); 2020 May; 22(3):433-440. PubMed ID: 31628708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional and Posttranscriptional Regulation of Drought Stress Treatments in Brachypodium Leaves.
    Bertolini E; Pè ME; Mica E
    Methods Mol Biol; 2018; 1667():21-29. PubMed ID: 29039000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves.
    Verelst W; Bertolini E; De Bodt S; Vandepoele K; Demeulenaere M; Pè ME; Inzé D
    Mol Plant; 2013 Mar; 6(2):311-22. PubMed ID: 23015761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.
    Zhu C; Luo N; He M; Chen G; Zhu J; Yin G; Li X; Hu Y; Li J; Yan Y
    PLoS One; 2014; 9(4):e94704. PubMed ID: 24747843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative phosphoproteomics reveals the role of wild soybean GsSnRK1 as a metabolic regulator under drought and alkali stresses.
    Li Q; Sun Q; Wang D; Liu Y; Zhang P; Lu H; Zhang Y; Zhang S; Wang A; Ding X; Xiao J
    J Proteomics; 2022 Apr; 258():104528. PubMed ID: 35182787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Significant and unique changes in phosphorylation levels of four phosphoproteins in two apple rootstock genotypes under drought stress.
    Ren J; Mao J; Zuo C; Calderón-Urrea A; Dawuda MM; Zhao X; Li X; Chen B
    Mol Genet Genomics; 2017 Dec; 292(6):1307-1322. PubMed ID: 28710562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon.
    Wen F; Wu X; Li T; Jia M; Liu X; Li P; Zhou X; Ji X; Yue X
    PLoS One; 2017; 12(7):e0180352. PubMed ID: 28683139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolomic Variation Aligns with Two Geographically Distinct Subpopulations of
    Skalska A; Beckmann M; Corke F; Savas Tuna G; Tuna M; Doonan JH; Hasterok R; Mur LAJ
    Cells; 2021 Mar; 10(3):. PubMed ID: 33808796
    [No Abstract]   [Full Text] [Related]  

  • 29. Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon.
    Feng Y; Yin Y; Fei S
    Plant Sci; 2015 May; 234():163-73. PubMed ID: 25804819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L.
    Zhang M; Chen GX; Lv DW; Li XH; Yan YM
    J Proteome Res; 2015 Apr; 14(4):1727-38. PubMed ID: 25652041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress.
    Zhang C; Zhang L; Zhang S; Zhu S; Wu P; Chen Y; Li M; Jiang H; Wu G
    BMC Plant Biol; 2015 Jan; 15():17. PubMed ID: 25604012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BdHD1, a histone deacetylase of
    Song J; Torrez A; Henry H; Tian L
    Plant Signal Behav; 2020 Aug; 15(8):1774715. PubMed ID: 32543955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptomic analysis of submergence-tolerant and sensitive Brachypodium distachyon ecotypes reveals oxidative stress as a major tolerance factor.
    Rivera-Contreras IK; Zamora-Hernández T; Huerta-Heredia AA; Capataz-Tafur J; Barrera-Figueroa BE; Juntawong P; Peña-Castro JM
    Sci Rep; 2016 Jun; 6():27686. PubMed ID: 27282694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific peroxidases differentiate Brachypodium distachyon accessions and are associated with drought tolerance traits.
    Luo N; Yu X; Nie G; Liu J; Jiang Y
    Ann Bot; 2016 Aug; 118(2):259-70. PubMed ID: 27325900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression and evolution of the phospholipase C gene family in Brachypodium distachyon.
    Wang X; Liu Y; Li Z; Gao X; Dong J; Yang M
    Genes Genomics; 2020 Sep; 42(9):1041-1053. PubMed ID: 32712839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.
    Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG
    Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon.
    Bertolini E; Verelst W; Horner DS; Gianfranceschi L; Piccolo V; Inzé D; Pè ME; Mica E
    Mol Plant; 2013 Mar; 6(2):423-43. PubMed ID: 23264558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Phosphoproteomic Analysis Reveals the Response of Starch Metabolism to High-Temperature Stress in Rice Endosperm.
    Pang Y; Hu Y; Bao J
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis.
    Chen Y; Hoehenwarter W
    Plant Physiol; 2015 Dec; 169(4):3021-33. PubMed ID: 26471895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat.
    Kang G; Li G; Xu W; Peng X; Han Q; Zhu Y; Guo T
    J Proteome Res; 2012 Dec; 11(12):6066-79. PubMed ID: 23101459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.