These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27748413)

  • 1. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity.
    Su SW; Lu ZK; Gou SC; Liao WT
    Sci Rep; 2016 Oct; 6():35402. PubMed ID: 27748413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent control of optical information with matter wave dynamics.
    Ginsberg NS; Garner SR; Hau LV
    Nature; 2007 Feb; 445(7128):623-6. PubMed ID: 17287804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection.
    Ren J; Gu Y; Zhao D; Zhang F; Zhang T; Gong Q
    Phys Rev Lett; 2017 Feb; 118(7):073604. PubMed ID: 28256881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable bistability in hybrid Bose-Einstein condensate optomechanics.
    Yasir KA; Liu WM
    Sci Rep; 2015 Jun; 5():10612. PubMed ID: 26035206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casimir Forces and Quantum Friction from Ginzburg Radiation in Atomic Bose-Einstein Condensates.
    Marino J; Recati A; Carusotto I
    Phys Rev Lett; 2017 Jan; 118(4):045301. PubMed ID: 28186806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Multi-Ion Cavity Coupling.
    Begley S; Vogt M; Gulati GK; Takahashi H; Keller M
    Phys Rev Lett; 2016 Jun; 116(22):223001. PubMed ID: 27314716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective emission of matter-wave jets from driven Bose-Einstein condensates.
    Clark LW; Gaj A; Feng L; Chin C
    Nature; 2017 Nov; 551(7680):356-359. PubMed ID: 29107941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.
    Treutlein P; Hunger D; Camerer S; Hänsch TW; Reichel J
    Phys Rev Lett; 2007 Oct; 99(14):140403. PubMed ID: 17930650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The onset of matter-wave amplification in a superradiant Bose-Einstein condensate.
    Schneble D; Torii Y; Boyd M; Streed EW; Pritchard DE; Ketterle W
    Science; 2003 Apr; 300(5618):475-8. PubMed ID: 12663817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many-body cavity quantum electrodynamics with driven inhomogeneous emitters.
    Lei M; Fukumori R; Rochman J; Zhu B; Endres M; Choi J; Faraon A
    Nature; 2023 May; 617(7960):271-276. PubMed ID: 37100918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanics and quantum phase of the Bose-Einstein condensate with the cavity mediated spin-orbit coupling.
    Zhang P; Tang P; Pan R; Chen X; Zhou X; Zhang S
    Opt Express; 2023 Feb; 31(5):8240-8256. PubMed ID: 36859940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.
    Bakhtiari MR; Hemmerich A; Ritsch H; Thorwart M
    Phys Rev Lett; 2015 Mar; 114(12):123601. PubMed ID: 25860742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects.
    Zohar E; Cirac JI; Reznik B
    Phys Rev Lett; 2012 Sep; 109(12):125302. PubMed ID: 23005955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-Wave Multiplexed Atom-Cavity Electrodynamics.
    Cox KC; Meyer DH; Castillo ZA; Fatemi FK; Kunz PD
    Phys Rev Lett; 2019 Dec; 123(26):263601. PubMed ID: 31951441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics.
    Yasir KA; Liu WM
    Sci Rep; 2016 Mar; 6():22651. PubMed ID: 26955789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supermode-density-wave-polariton condensation with a Bose-Einstein condensate in a multimode cavity.
    Kollár AJ; Papageorge AT; Vaidya VD; Guo Y; Keeling J; Lev BL
    Nat Commun; 2017 Feb; 8():14386. PubMed ID: 28211455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-coherent amplification of matter waves.
    Kozuma M; Suzuki Y; Torii Y; Sugiura T; Kuga T; Hagley EW; Deng L
    Science; 1999 Dec; 286(5448):2309-12. PubMed ID: 10600733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rydberg Electrons in a Bose-Einstein Condensate.
    Wang J; Gacesa M; Côté R
    Phys Rev Lett; 2015 Jun; 114(24):243003. PubMed ID: 26196974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.