These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27748579)

  • 21. Development and biological evaluation of acyl protein thioesterase 1 (APT1) inhibitors.
    Deck P; Pendzialek D; Biel M; Wagner M; Popkirova B; Ludolph B; Kragol G; Kuhlmann J; Giannis A; Waldmann H
    Angew Chem Int Ed Engl; 2005 Aug; 44(31):4975-80. PubMed ID: 16003812
    [No Abstract]   [Full Text] [Related]  

  • 22. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization.
    Lin DT; Conibear E
    Elife; 2015 Dec; 4():e11306. PubMed ID: 26701913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism.
    Allen M; Qin W; Moreau F; Moffatt B
    Physiol Plant; 2002 May; 115(1):56-68. PubMed ID: 12010467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid Solid-Phase Construction of Serine Hydrolase Probes Results in Selective Activity-Based Probes for Acyl Protein Thioesterases-1/2.
    Vanhoutte R; van de Plassche MAT; Verhelst SHL
    J Med Chem; 2020 Oct; 63(20):11845-11853. PubMed ID: 32990443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Profiling and inhibiting reversible palmitoylation.
    Hernandez JL; Majmudar JD; Martin BR
    Curr Opin Chem Biol; 2013 Feb; 17(1):20-6. PubMed ID: 23287289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a novel target of sulforaphane: Sulforaphane binds to acyl-protein thioesterase 2 (APT2) and attenuates its palmitoylation.
    Kodaka M; Kikuchi A; Kawahira K; Kamada H; Katsuta R; Ishigami K; Suzuki T; Yamamoto Y; Inoue J
    Biochem Biophys Res Commun; 2024 Sep; 726():150244. PubMed ID: 38905785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels.
    Tian L; McClafferty H; Knaus HG; Ruth P; Shipston MJ
    J Biol Chem; 2012 Apr; 287(18):14718-25. PubMed ID: 22399288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an activity-based probe for acyl-protein thioesterases.
    Garland M; Schulze CJ; Foe IT; van der Linden WA; Child MA; Bogyo M
    PLoS One; 2018; 13(1):e0190255. PubMed ID: 29364904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior.
    Sadeghi RS; Kulej K; Kathayat RS; Garcia BA; Dickinson BC; Brady DC; Witze ES
    Elife; 2018 Apr; 7():. PubMed ID: 29648538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic Fluorogenic Peptides Reveal Dynamic Substrate Specificity of Depalmitoylases.
    Amara N; Foe IT; Onguka O; Garland M; Bogyo M
    Cell Chem Biol; 2019 Jan; 26(1):35-47.e7. PubMed ID: 30393067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1.
    Gök C; Main A; Gao X; Kerekes Z; Plain F; Kuo CW; Robertson AD; Fraser NJ; Fuller W
    Cell Calcium; 2021 Apr; 97():102408. PubMed ID: 33873072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting the Ras palmitoylation/depalmitoylation cycle in cancer.
    Lin DTS; Davis NG; Conibear E
    Biochem Soc Trans; 2017 Aug; 45(4):913-921. PubMed ID: 28630138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis.
    Linne U; Schwarzer D; Schroeder GN; Marahiel MA
    Eur J Biochem; 2004 Apr; 271(8):1536-45. PubMed ID: 15066179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Depalmitoylation and cell physiology: APT1 as a mediator of metabolic signals.
    Speck SL; Wei X; Semenkovich CF
    Am J Physiol Cell Physiol; 2024 Apr; 326(4):C1034-C1041. PubMed ID: 38344800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein acyl thioesterases (Review).
    Zeidman R; Jackson CS; Magee AI
    Mol Membr Biol; 2009 Jan; 26(1):32-41. PubMed ID: 19115143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial Optimization of Activity-Based Probes for Acyl Protein Thioesterases 1 and 2.
    Vanhoutte R; Verhelst SHL
    ACS Med Chem Lett; 2022 Jul; 13(7):1144-1150. PubMed ID: 35859871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure, function, and regulation of thioesterases.
    Swarbrick CMD; Nanson JD; Patterson EI; Forwood JK
    Prog Lipid Res; 2020 Jul; 79():101036. PubMed ID: 32416211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity-Based Sensing of
    Azizi SA; Kathayat RS; Dickinson BC
    Acc Chem Res; 2019 Nov; 52(11):3029-3038. PubMed ID: 31577124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of a hotdog-fold acyl-CoA thioesterase.
    Cantu DC; Ardèvol A; Rovira C; Reilly PJ
    Chemistry; 2014 Jul; 20(29):9045-51. PubMed ID: 24894958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes.
    Kathayat RS; Cao Y; Elvira PD; Sandoz PA; Zaballa ME; Springer MZ; Drake LE; Macleod KF; van der Goot FG; Dickinson BC
    Nat Commun; 2018 Jan; 9(1):334. PubMed ID: 29362370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.