These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27748769)

  • 21. The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana.
    Fukaki H; Fujisawa H; Tasaka M
    Plant Cell Physiol; 1997 Jul; 38(7):804-10. PubMed ID: 9297846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant.
    Wolverton C; Paya AM; Toska J
    Physiol Plant; 2011 Apr; 141(4):373-82. PubMed ID: 21143486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights into root gravitropic signalling.
    Sato EM; Hijazi H; Bennett MJ; Vissenberg K; Swarup R
    J Exp Bot; 2015 Apr; 66(8):2155-65. PubMed ID: 25547917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A proteomics approach identifies novel proteins involved in gravitropic signal transduction.
    Schenck CA; Nadella V; Clay SL; Lindner J; Abrams Z; Wyatt SE
    Am J Bot; 2013 Jan; 100(1):194-202. PubMed ID: 23281391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula.
    Tan TH; Silverberg JL; Floss DS; Harrison MJ; Henley CL; Cohen I
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):12938-43. PubMed ID: 26432881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
    Muday GK; Brady SR; Argueso C; Deruère J; Kieber JJ; DeLong A
    Plant Physiol; 2006 Aug; 141(4):1617-29. PubMed ID: 16798939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis.
    Zou N; Li B; Dong G; Kronzucker HJ; Shi W
    J Exp Bot; 2012 Jun; 63(10):3777-88. PubMed ID: 22407650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrate reductase mediates nitric oxide-dependent gravitropic response in Arabidopsis thaliana roots.
    Vazquez MM; Casalongué CA; París R
    Plant Signal Behav; 2019; 14(4):e1578631. PubMed ID: 30782074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gravity sensing and signaling.
    Morita MT; Tasaka M
    Curr Opin Plant Biol; 2004 Dec; 7(6):712-8. PubMed ID: 15491921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of fast root gravitropism in seed plants.
    Zhang Y; Xiao G; Wang X; Zhang X; Friml J
    Nat Commun; 2019 Aug; 10(1):3480. PubMed ID: 31375675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis.
    Sun F; Zhang W; Hu H; Li B; Wang Y; Zhao Y; Li K; Liu M; Li X
    Plant Physiol; 2008 Jan; 146(1):178-88. PubMed ID: 18024552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Cyclic Nucleotide-Gated Channel CNGC14 Regulates Root Gravitropism in Arabidopsis thaliana.
    Shih HW; DePew CL; Miller ND; Monshausen GB
    Curr Biol; 2015 Dec; 25(23):3119-25. PubMed ID: 26752079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress.
    Zou N; Li B; Chen H; Su Y; Kronzucker HJ; Xiong L; Baluška F; Shi W
    New Phytol; 2013 Oct; 200(1):97-111. PubMed ID: 23782229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding the gravitropic signal transduction pathway through the analysis of new Arabidopsis mutants.
    Migliaccio F; Ferrari S; Piconese S
    J Gravit Physiol; 1998 Jul; 5(1):P141-2. PubMed ID: 11542327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular genetic analysis of plant gravitropism.
    Lomax TL
    Gravit Space Biol Bull; 1997 Jun; 10(2):75-82. PubMed ID: 11540123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control.
    Furutani M; Hirano Y; Nishimura T; Nakamura M; Taniguchi M; Suzuki K; Oshida R; Kondo C; Sun S; Kato K; Fukao Y; Hakoshima T; Morita MT
    Nat Commun; 2020 Jan; 11(1):76. PubMed ID: 31900388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism.
    Zou JJ; Zheng ZY; Xue S; Li HH; Wang YR; Le J
    J Exp Bot; 2016 Oct; 67(18):5325-5337. PubMed ID: 27473572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.
    Han W; Rong H; Zhang H; Wang MH
    Biochem Biophys Res Commun; 2009 Jan; 378(4):695-700. PubMed ID: 19056344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases.
    Shin H; Shin HS; Guo Z; Blancaflor EB; Masson PH; Chen R
    Plant J; 2005 Apr; 42(2):188-200. PubMed ID: 15807782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of a gravitropism phenotype in glutamate receptor-like 3.3 mutants of Arabidopsis thaliana using machine vision and computation.
    Miller ND; Durham Brooks TL; Assadi AH; Spalding EP
    Genetics; 2010 Oct; 186(2):585-93. PubMed ID: 20647506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.