These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1641 related articles for article (PubMed ID: 27748956)

  • 21. Left ventricular vascular and metabolic adaptations to high-intensity interval and moderate intensity continuous training: a randomized trial in healthy middle-aged men.
    Eskelinen JJ; Heinonen I; Löyttyniemi E; Hakala J; Heiskanen MA; Motiani KK; Virtanen K; Pärkkä JP; Knuuti J; Hannukainen JC; Kalliokoski KK
    J Physiol; 2016 Dec; 594(23):7127-7140. PubMed ID: 27500951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Psychological and Behavioral Responses to Interval and Continuous Exercise.
    Stork MJ; Gibala MJ; Martin Ginis KA
    Med Sci Sports Exerc; 2018 Oct; 50(10):2110-2121. PubMed ID: 29771824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-intensity interval training in chronic kidney disease: A randomized pilot study.
    Beetham KS; Howden EJ; Fassett RG; Petersen A; Trewin AJ; Isbel NM; Coombes JS
    Scand J Med Sci Sports; 2019 Aug; 29(8):1197-1204. PubMed ID: 31025412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological and skeletal muscle responses to high-intensity interval exercise in Thoroughbred horses.
    Mukai K; Ohmura H; Takahashi Y; Ebisuda Y; Yoneda K; Miyata H
    Front Vet Sci; 2023; 10():1241266. PubMed ID: 38026631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle.
    Fyfe JJ; Bishop DJ; Zacharewicz E; Russell AP; Stepto NK
    Am J Physiol Regul Integr Comp Physiol; 2016 Jun; 310(11):R1297-311. PubMed ID: 27101297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.
    Perry CG; Heigenhauser GJ; Bonen A; Spriet LL
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1112-23. PubMed ID: 19088769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Right ventricular metabolic adaptations to high-intensity interval and moderate-intensity continuous training in healthy middle-aged men.
    Heiskanen MA; Leskinen T; Heinonen IH; Löyttyniemi E; Eskelinen JJ; Virtanen K; Hannukainen JC; Kalliokoski KK
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H667-75. PubMed ID: 27448554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological Responses to Low-Volume Interval Training in Women.
    Skelly LE; Bailleul C; Gillen JB
    Sports Med Open; 2021 Dec; 7(1):99. PubMed ID: 34940959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing skeletal muscle carnitine availability does not alter the adaptations to high-intensity interval training.
    Shannon CE; Ghasemi R; Greenhaff PL; Stephens FB
    Scand J Med Sci Sports; 2018 Jan; 28(1):107-115. PubMed ID: 28345160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Passive heat therapy in sedentary humans increases skeletal muscle capillarization and eNOS content but not mitochondrial density or GLUT4 content.
    Hesketh K; Shepherd SO; Strauss JA; Low DA; Cooper RJ; Wagenmakers AJM; Cocks M
    Am J Physiol Heart Circ Physiol; 2019 Jul; 317(1):H114-H123. PubMed ID: 31074654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake.
    Motiani KK; Savolainen AM; Eskelinen JJ; Toivanen J; Ishizu T; Yli-Karjanmaa M; Virtanen KA; Parkkola R; Kapanen J; Grönroos TJ; Haaparanta-Solin M; Solin O; Savisto N; Ahotupa M; Löyttyniemi E; Knuuti J; Nuutila P; Kalliokoski KK; Hannukainen JC
    J Appl Physiol (1985); 2017 May; 122(5):1188-1197. PubMed ID: 28183816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model.
    Li FH; Sun L; Zhu M; Li T; Gao HE; Wu DS; Zhu L; Duan R; Liu TC
    Exp Gerontol; 2018 Nov; 113():150-162. PubMed ID: 30308288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training.
    Thompson C; Wylie LJ; Blackwell JR; Fulford J; Black MI; Kelly J; McDonagh ST; Carter J; Bailey SJ; Vanhatalo A; Jones AM
    J Appl Physiol (1985); 2017 Mar; 122(3):642-652. PubMed ID: 27909231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model.
    Li FH; Li T; Ai JY; Sun L; Min Z; Duan R; Zhu L; Liu YY; Liu TC
    Front Physiol; 2018; 9():571. PubMed ID: 29875683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase.
    Nyberg M; Egelund J; Mandrup CM; Andersen CB; Hansen KMBE; Hergel IF; Valbak-Andersen N; Frikke-Schmidt R; Stallknecht B; Bangsbo J; Hellsten Y
    J Physiol; 2017 May; 595(9):2969-2983. PubMed ID: 28231611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic and methodological perspectives on the impact of intense interval training on post-exercise metabolism.
    Moniz SC; Islam H; Hazell TJ
    Scand J Med Sci Sports; 2020 Apr; 30(4):638-651. PubMed ID: 31830334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissimilar Physiological and Perceptual Responses Between Sprint Interval Training and High-Intensity Interval Training.
    Wood KM; Olive B; LaValle K; Thompson H; Greer K; Astorino TA
    J Strength Cond Res; 2016 Jan; 30(1):244-50. PubMed ID: 26691413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Affective Adaptation to Repeated SIT and MICT Protocols in Insulin-Resistant Subjects.
    Saanijoki T; Nummenmaa L; Koivumäki M; Löyttyniemi E; Kalliokoski KK; Hannukainen JC
    Med Sci Sports Exerc; 2018 Jan; 50(1):18-27. PubMed ID: 28857909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2.
    Henríquez-Olguín C; Renani LB; Arab-Ceschia L; Raun SH; Bhatia A; Li Z; Knudsen JR; Holmdahl R; Jensen TE
    Redox Biol; 2019 Jun; 24():101188. PubMed ID: 30959461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 83.