These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27749030)

  • 61. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification.
    Lu Y; Yuan W
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29167-29176. PubMed ID: 28796484
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrospun Biodegradable Poly(L-lactic acid) Nanofiber Membranes as Highly Porous Oil Sorbent Nanomaterials.
    Yang J; Li F; Lu G; Lu Y; Song C; Zhou R; Wu S
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957101
    [TBL] [Abstract][Full Text] [Related]  

  • 63. One-step preparation of superhydrophobic acrylonitrile-butadiene-styrene copolymer coating for ultrafast separation of water-in-oil emulsions.
    Deng W; Long M; Zhou Q; Wen N; Deng W
    J Colloid Interface Sci; 2018 Feb; 511():21-26. PubMed ID: 28963985
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method.
    Fan T; Qian Q; Hou Z; Liu Y; Lu M
    Carbohydr Polym; 2018 Nov; 200():63-71. PubMed ID: 30177209
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A versatile approach to produce superhydrophobic materials used for oil-water separation.
    Zhu X; Zhang Z; Ge B; Men X; Zhou X; Xue Q
    J Colloid Interface Sci; 2014 Oct; 432():105-8. PubMed ID: 25086383
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water.
    Zang D; Wu C; Zhu R; Zhang W; Yu X; Zhang Y
    Chem Commun (Camb); 2013 Sep; 49(75):8410-2. PubMed ID: 23939302
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Corrosion resistance for superwetting immiscible oil/water separation porous materials.
    Rong W; Zhang H; Tuo Y; Chen W; Liu X
    RSC Adv; 2019 Apr; 9(23):12854-12863. PubMed ID: 35520797
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication of a PPS Microporous Membrane for Efficient Water-in-Oil Emulsion Separation.
    Yang C; Han N; Wang W; Zhang W; Han C; Cui Z; Zhang X
    Langmuir; 2018 Sep; 34(36):10580-10590. PubMed ID: 30125115
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification.
    Arslan O; Aytac Z; Uyar T
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19747-54. PubMed ID: 27398738
    [TBL] [Abstract][Full Text] [Related]  

  • 70. White Graphene-Cobalt Oxide Hybrid Filler Reinforced Polystyrene Nanofibers for Selective Oil Absorption.
    Ponnamma D; S Nair S; Parangusan H; K Hassan M; Adham S; Karim A; Al Ali Al-Maadeed M
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31861294
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Superhydrophobic activated carbon-coated sponges for separation and absorption.
    Sun H; Li A; Zhu Z; Liang W; Zhao X; La P; Deng W
    ChemSusChem; 2013 Jun; 6(6):1057-62. PubMed ID: 23650204
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functionalization of cellulose fibers alongside growth of 2D LDH platelets through urea hydrolysis inspired Taro wettability.
    Aladpoosh R; Montazer M
    Carbohydr Polym; 2022 Jan; 275():118584. PubMed ID: 34742403
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A self-assembled superhydrophobic electrospun carbon-silica nanofiber sponge for selective removal and recovery of oils and organic solvents.
    Tai MH; Tan BY; Juay J; Sun DD; Leckie JO
    Chemistry; 2015 Mar; 21(14):5395-402. PubMed ID: 25597480
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CO2 -Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability.
    Che H; Huo M; Peng L; Fang T; Liu N; Feng L; Wei Y; Yuan J
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8934-8. PubMed ID: 26079643
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Construction of durable superhydrophilic activated carbon fibers based material for highly-efficient oil/water separation and aqueous contaminants degradation.
    Wang J; Duan H; Wang M; Shentu Q; Xu C; Yang Y; Lv W; Yao Y
    Environ Res; 2022 May; 207():112212. PubMed ID: 34662578
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.
    Zhao T; Zhang D; Yu C; Jiang L
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24186-91. PubMed ID: 27564457
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrospun frogspawn structured membrane for gravity-driven oil-water separation.
    Zhang M; Ma W; Wu S; Tang G; Cui J; Zhang Q; Chen F; Xiong R; Huang C
    J Colloid Interface Sci; 2019 Jul; 547():136-144. PubMed ID: 30952075
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation.
    Jayaramulu K; Datta KK; Rösler C; Petr M; Otyepka M; Zboril R; Fischer RA
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1178-82. PubMed ID: 26639893
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation.
    Lo YH; Yang CY; Chang HK; Hung WC; Chen PY
    Sci Rep; 2017 May; 7(1):1426. PubMed ID: 28469200
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A sustainable layered nanofiber/sheet aerogels enabling repeated life cycles for effective oil/water separation.
    Dong T; Ye H; Wang W; Zhang Y; Han G; Peng F; Lou CW; Chi S; Liu Y; Liu C; Lin JH
    J Hazard Mater; 2023 Jul; 454():131474. PubMed ID: 37116327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.