These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 27749068)
1. Implementation of Constrained DFT for Computing Charge Transfer Rates within the Projector Augmented Wave Method. Melander M; Jónsson EÖ; Mortensen JJ; Vegge T; García Lastra JM J Chem Theory Comput; 2016 Nov; 12(11):5367-5378. PubMed ID: 27749068 [TBL] [Abstract][Full Text] [Related]
2. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set. Oberhofer H; Blumberger J J Chem Phys; 2010 Dec; 133(24):244105. PubMed ID: 21197974 [TBL] [Abstract][Full Text] [Related]
3. PyCDFT: A Python package for constrained density functional theory. Ma H; Wang W; Kim S; Cheng MH; Govoni M; Galli G J Comput Chem; 2020 Jul; 41(20):1859-1867. PubMed ID: 32497321 [TBL] [Abstract][Full Text] [Related]
4. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level. Gillet N; Berstis L; Wu X; Gajdos F; Heck A; de la Lande A; Blumberger J; Elstner M J Chem Theory Comput; 2016 Oct; 12(10):4793-4805. PubMed ID: 27611912 [TBL] [Abstract][Full Text] [Related]
5. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Enkovaara J; Rostgaard C; Mortensen JJ; Chen J; Dułak M; Ferrighi L; Gavnholt J; Glinsvad C; Haikola V; Hansen HA; Kristoffersen HH; Kuisma M; Larsen AH; Lehtovaara L; Ljungberg M; Lopez-Acevedo O; Moses PG; Ojanen J; Olsen T; Petzold V; Romero NA; Stausholm-Møller J; Strange M; Tritsaris GA; Vanin M; Walter M; Hammer B; Häkkinen H; Madsen GK; Nieminen RM; Nørskov JK; Puska M; Rantala TT; Schiøtz J; Thygesen KS; Jacobsen KW J Phys Condens Matter; 2010 Jun; 22(25):253202. PubMed ID: 21393795 [TBL] [Abstract][Full Text] [Related]
6. Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory. Xiong XG; Yanai T J Chem Theory Comput; 2017 Jul; 13(7):3236-3249. PubMed ID: 28531346 [TBL] [Abstract][Full Text] [Related]
7. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. Gagliardi L; Truhlar DG; Li Manni G; Carlson RK; Hoyer CE; Bao JL Acc Chem Res; 2017 Jan; 50(1):66-73. PubMed ID: 28001359 [TBL] [Abstract][Full Text] [Related]
8. Projector Augmented Wave Method with Gauss-Type Atomic Orbital Basis: Implementation of the Generalized Gradient Approximation and Mesh Grid Quadrature. Xiong XG; Sugiura A; Yanai T J Chem Theory Comput; 2020 Aug; 16(8):4883-4898. PubMed ID: 32633511 [TBL] [Abstract][Full Text] [Related]
10. A self-consistent DFT + DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT + U. Amadon B J Phys Condens Matter; 2012 Feb; 24(7):075604. PubMed ID: 22301576 [TBL] [Abstract][Full Text] [Related]
11. Electron transfer in extended systems: characterization by periodic density functional theory including the electronic coupling. Behara PK; Dupuis M Phys Chem Chem Phys; 2020 May; 22(19):10609-10623. PubMed ID: 31670326 [TBL] [Abstract][Full Text] [Related]
12. Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations. II. Kubas A; Gajdos F; Heck A; Oberhofer H; Elstner M; Blumberger J Phys Chem Chem Phys; 2015 Jun; 17(22):14342-54. PubMed ID: 25573447 [TBL] [Abstract][Full Text] [Related]
13. Analytic energy gradients for constrained DFT-configuration interaction. Kaduk B; Tsuchimochi T; Van Voorhis T J Chem Phys; 2014 May; 140(18):18A503. PubMed ID: 24832311 [TBL] [Abstract][Full Text] [Related]
14. Robust and Efficient Constrained DFT Molecular Dynamics Approach for Biochemical Modeling. Řezáč J; Lévy B; Demachy I; de la Lande A J Chem Theory Comput; 2012 Feb; 8(2):418-27. PubMed ID: 26596593 [TBL] [Abstract][Full Text] [Related]
15. Extracting electron transfer coupling elements from constrained density functional theory. Wu Q; Van Voorhis T J Chem Phys; 2006 Oct; 125(16):164105. PubMed ID: 17092061 [TBL] [Abstract][Full Text] [Related]
16. Constrained density functional theory based configuration interaction improves the prediction of reaction barrier heights. Wu Q; Kaduk B; Van Voorhis T J Chem Phys; 2009 Jan; 130(3):034109. PubMed ID: 19173512 [TBL] [Abstract][Full Text] [Related]
17. Communication: CDFT-CI couplings can be unreliable when there is fractional charge transfer. Mavros MG; Van Voorhis T J Chem Phys; 2015 Dec; 143(23):231102. PubMed ID: 26696039 [TBL] [Abstract][Full Text] [Related]
18. Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations. Kubas A; Hoffmann F; Heck A; Oberhofer H; Elstner M; Blumberger J J Chem Phys; 2014 Mar; 140(10):104105. PubMed ID: 24628150 [TBL] [Abstract][Full Text] [Related]
19. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states. Yu K; Libisch F; Carter EA J Chem Phys; 2015 Sep; 143(10):102806. PubMed ID: 26373999 [TBL] [Abstract][Full Text] [Related]
20. Orbital-free density functional theory implementation with the projector augmented-wave method. Lehtomäki J; Makkonen I; Caro MA; Harju A; Lopez-Acevedo O J Chem Phys; 2014 Dec; 141(23):234102. PubMed ID: 25527914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]