BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27749096)

  • 1. Safe and Complete Contig Assembly Through Omnitigs.
    Tomescu AI; Medvedev P
    J Comput Biol; 2017 Jun; 24(6):590-602. PubMed ID: 27749096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.
    Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P
    J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterozygous genome assembly via binary classification of homologous sequence.
    Bodily PM; Fujimoto M; Ortega C; Okuda N; Price JC; Clement MJ; Snell Q
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S5. PubMed ID: 25952609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U
    Castro CJ; Ng TFF
    J Comput Biol; 2017 Nov; 24(11):1071-1080. PubMed ID: 28418726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLIQ: simple linear inequalities for efficient contig scaffolding.
    Roy RS; Chen KC; Sengupta AM; Schliep A
    J Comput Biol; 2012 Oct; 19(10):1162-75. PubMed ID: 23057825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LSG: An External-Memory Tool to Compute String Graphs for Next-Generation Sequencing Data Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2016 Mar; 23(3):137-49. PubMed ID: 26953874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying wrong assemblies in de novo short read primary sequence assembly contigs.
    Chawla V; Kumar R; Shankar R
    J Biosci; 2016 Sep; 41(3):455-74. PubMed ID: 27581937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Genome Assembly through Parallel de Bruijn Graph Construction for Multiple k-mers.
    Mahadik K; Wright C; Kulkarni M; Bagchi S; Chaterji S
    Sci Rep; 2019 Oct; 9(1):14882. PubMed ID: 31619717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient algorithm for the contig ordering problem under algebraic rearrangement distance.
    Lu CL
    J Comput Biol; 2015 Nov; 22(11):975-87. PubMed ID: 26247343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FSG: Fast String Graph Construction for De Novo Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2017 Oct; 24(10):953-968. PubMed ID: 28715269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.
    Kosugi S; Hirakawa H; Tabata S
    Bioinformatics; 2015 Dec; 31(23):3733-41. PubMed ID: 26261222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of short read metagenomic assembly.
    Charuvaka A; Rangwala H
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput genome scaffolding from in vivo DNA interaction frequency.
    Kaplan N; Dekker J
    Nat Biotechnol; 2013 Dec; 31(12):1143-7. PubMed ID: 24270850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathset graphs: a novel approach for comprehensive utilization of paired reads in genome assembly.
    Pham SK; Antipov D; Sirotkin A; Tesler G; Pevzner PA; Alekseyev MA
    J Comput Biol; 2013 Apr; 20(4):359-71. PubMed ID: 22803627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.