These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 27749871)

  • 41. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology.
    Barreto M; Schoenhagen P; Nair A; Amatangelo S; Milite M; Obuchowski NA; Lieber ML; Halliburton SS
    J Cardiovasc Comput Tomogr; 2008; 2(4):234-42. PubMed ID: 19083956
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.
    Calcagno C; Lobatto ME; Dyvorne H; Robson PM; Millon A; Senders ML; Lairez O; Ramachandran S; Coolen BF; Black A; Mulder WJ; Fayad ZA
    NMR Biomed; 2015 Oct; 28(10):1304-14. PubMed ID: 26332103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of rosuvastatin on atherosclerotic plaque stability: An intravascular ultrasound elastography study.
    Li Z; Wang L; Hu X; Zhang P; Chen Y; Liu X; Xu M; Zhang Y; Zhang M
    Atherosclerosis; 2016 May; 248():27-35. PubMed ID: 26978584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Does Lp-PLA2 determination help predict atherosclerosis and cardiocerebrovascular disease?].
    Sertić J; Skorić B; Lovrić J; Bozina T; Reiner Z
    Acta Med Croatica; 2010 Oct; 64(4):237-45. PubMed ID: 21688606
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-invasive in vivo characterization of human carotid plaques with acoustic radiation force impulse ultrasound: comparison with histology after endarterectomy.
    Czernuszewicz TJ; Homeister JW; Caughey MC; Farber MA; Fulton JJ; Ford PF; Marston WA; Vallabhaneni R; Nichols TC; Gallippi CM
    Ultrasound Med Biol; 2015 Mar; 41(3):685-97. PubMed ID: 25619778
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectral analysis assisted photoacoustic imaging for lipid composition differentiation.
    Cao Y; Kole A; Lan L; Wang P; Hui J; Sturek M; Cheng JX
    Photoacoustics; 2017 Sep; 7():12-19. PubMed ID: 28649497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoacoustic viscoelasticity assessment of prefrontal cortex and cerebellum in normal and prenatal valproic acid-exposed rats.
    Hosseindokht Z; Davoudi S; Rahdar M; Janahmadi M; Kolahdouz M; Sasanpoour P
    Photoacoustics; 2024 Apr; 36():100590. PubMed ID: 38318427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photoacoustic elasto-viscography and optical coherence microscopy for multi-parametric
    Yang F; Ding W; Fu X; Chen W; Tang J
    Biomed Opt Express; 2023 Nov; 14(11):5615-5628. PubMed ID: 38021134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoacoustic based evaluation of viscoelastic properties of Gram-negative and Gram-positive bacterial colonies.
    Hosseindokht Z; Kolahdouz M; Hajikhani B; Sasanpour P
    Sci Rep; 2023 Sep; 13(1):14656. PubMed ID: 37670076
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited].
    Leartprapun N; Adie SG
    Biomed Opt Express; 2023 Jan; 14(1):208-248. PubMed ID: 36698669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanosecond SRS fiber amplifier for label-free near-infrared photoacoustic microscopy of lipids.
    Lee H; Seeger MR; Lippok N; Nadkarni SK; van Soest G; Bouma BE
    Photoacoustics; 2022 Mar; 25():100331. PubMed ID: 35096525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermoacoustic elastography: recovery of bulk elastic modulus of heterogeneous media using tomographically measured thermoacoustic measurements.
    Zheng Z; Jiang H
    Quant Imaging Med Surg; 2019 Apr; 9(4):625-635. PubMed ID: 31143653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cardiovascular optoacoustics: From mice to men - A review.
    Karlas A; Fasoula NA; Paul-Yuan K; Reber J; Kallmayer M; Bozhko D; Seeger M; Eckstein HH; Wildgruber M; Ntziachristos V
    Photoacoustics; 2019 Jun; 14():19-30. PubMed ID: 31024796
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noninvasive low-cycle fatigue characterization at high depth with photoacoustic eigen-spectrum analysis.
    Gao X; Tao C; Zhu R; Liu X
    Sci Rep; 2018 May; 8(1):7751. PubMed ID: 29773860
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-parameter characterization of atherosclerotic plaques based on optical coherence tomography, photoacoustic and viscoelasticity imaging.
    Wang P; Chen Z; Xing D
    Opt Express; 2020 Apr; 28(9):13761-13774. PubMed ID: 32403844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation.
    Zhang J; Yang S; Ji X; Zhou Q; Xing D
    J Am Coll Cardiol; 2014 Jul; 64(4):385-90. PubMed ID: 25060374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectral interferometric depth-resolved photoacoustic viscoelasticity imaging.
    Du S; Chen Z; Xing D
    Opt Lett; 2021 Apr; 46(7):1724-1727. PubMed ID: 33793528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification.
    Jansen K; van Soest G; van der Steen AF
    Ultrasound Med Biol; 2014 Jun; 40(6):1037-48. PubMed ID: 24631379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical evaluation of lipid accumulation in atherosclerotic tissues by photoacoustic viscoelasticity imaging.
    Zhao Y; Chen C; Yang S; Xing D
    Opt Lett; 2016 Oct; 41(19):4522-4525. PubMed ID: 27749871
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.