These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27749996)

  • 61. M
    Li W; Wang K; Huang J; Liu X; Fu D; Huang J; Li Q; Zhan G
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33263-33272. PubMed ID: 31429544
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improved hydrogen storage properties of MgH
    Zhang W; Xu G; Cheng Y; Chen L; Huo Q; Liu S
    Dalton Trans; 2018 Apr; 47(15):5217-5225. PubMed ID: 29537026
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb cocatalyzed Mg(NH(2))(2)-2LiH system.
    Li C; Liu Y; Ma R; Zhang X; Li Y; Gao M; Pan H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17024-33. PubMed ID: 25230404
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride.
    Liu Y; Du H; Zhang X; Yang Y; Gao M; Pan H
    Chem Commun (Camb); 2016 Jan; 52(4):705-8. PubMed ID: 26558426
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Theoretical study of the vibrational properties of NaAlH4 with AlH3 vacancies.
    Zhang F; Wang Y; Chou MY
    Faraday Discuss; 2011; 151():243-51; discussion 285-95. PubMed ID: 22455072
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fast H-vacancy dynamics during alanate decomposition by anelastic spectroscopy. proposition of a model for Ti-enhanced hydrogen transport.
    Palumbo O; Paolone A; Cantelli R; Jensen CM; Sulic M
    J Phys Chem B; 2006 May; 110(18):9105-11. PubMed ID: 16671722
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hydrogen storage properties of Ca(BH4)2-LiNH2 system.
    Chu H; Xiong Z; Wu G; Guo J; Zheng X; He T; Wu C; Chen P
    Chem Asian J; 2010 Jul; 5(7):1594-9. PubMed ID: 20455240
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Increasing the Hydrogenation and Dehydrogenation Rates of Magnesium by Incorporating CMC(Na) (Carboxymethylcellulose-Sodium Salt) and Nickel.
    Choi E; Kwak YJ; Song MY
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6580-6589. PubMed ID: 31026996
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The remarkably improved hydrogen storage performance of MgH
    Ji L; Zhang L; Yang X; Zhu X; Chen L
    Dalton Trans; 2020 Apr; 49(13):4146-4154. PubMed ID: 32154545
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Superior catalytic effects of FeCo nanosheets on MgH
    Yang X; Ji L; Yan N; Sun Z; Lu X; Zhang L; Zhu X; Chen L
    Dalton Trans; 2019 Sep; 48(33):12699-12706. PubMed ID: 31384863
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functions of MgH2 in hydrogen storage reactions of the 6LiBH4-CaH2 reactive hydride composite.
    Zhou Y; Liu Y; Zhang Y; Gao M; Pan H
    Dalton Trans; 2012 Aug; 41(36):10980-7. PubMed ID: 22842399
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improvement in the Hydrogen-Storage Characteristics of Magnesium Hydride by Grinding with Sodium Alanate and Transition Metals in a Hydrogen Atmosphere.
    Song MY; Kwak YJ; Lee SH
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6047-6054. PubMed ID: 29677742
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.
    Yin LC; Wang P; Kang XD; Sun CH; Cheng HM
    Phys Chem Chem Phys; 2007 Mar; 9(12):1499-502. PubMed ID: 17356758
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The model case of an oxygen storage catalyst - non-stoichiometry, point defects and electrical conductivity of single crystalline CeO2-ZrO2-Y2O3 solid solutions.
    Eufinger JP; Daniels M; Schmale K; Berendts S; Ulbrich G; Lerch M; Wiemhöfer HD; Janek J
    Phys Chem Chem Phys; 2014 Dec; 16(46):25583-600. PubMed ID: 25351862
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lithium Borohydride Nanorods: Self-Assembling Growth and Remarkable Hydrogen Cycling Properties.
    Zhang W; Zhou L; Zhang X; Huang Z; Fang F; Hong Z; Li J; Gao M; Sun W; Pan H; Liu Y
    Small; 2024 Aug; 20(32):e2400965. PubMed ID: 38506595
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetic behavior of Ti-doped NaAlH4 when cocatalyzed with carbon nanostructures.
    Wang J; Ebner AD; Ritter JA
    J Phys Chem B; 2006 Sep; 110(35):17353-8. PubMed ID: 16942070
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanistic understanding of CoO-catalyzed hydrogen desorption from a LiBH4·NH3-3LiH system.
    Zhang Y; Liu Y; Zhang X; Li Y; Gao M; Pan H
    Dalton Trans; 2015 Aug; 44(32):14514-22. PubMed ID: 26207564
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of Al-based additives on the hydrogen storage performance of the Mg(NH2)2-2LiH system.
    Cao H; Zhang Y; Wang J; Xiong Z; Wu G; Qiu J; Chen P
    Dalton Trans; 2013 Apr; 42(15):5524-31. PubMed ID: 23436134
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 2-(N-Methylbenzyl)pyridine: A Potential Liquid Organic Hydrogen Carrier with Fast H
    Oh J; Jeong K; Kim TW; Kwon H; Han JW; Park JH; Suh YW
    ChemSusChem; 2018 Feb; 11(4):661-665. PubMed ID: 29282876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.