These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Biocompatible polysaccharide-based cryogels. Reichelt S; Becher J; Weisser J; Prager A; Decker U; Möller S; Berg A; Schnabelrauch M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():164-70. PubMed ID: 24411364 [TBL] [Abstract][Full Text] [Related]
28. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Hixon KR; Eberlin CT; Lu T; Neal SM; Case ND; McBride-Gagyi SH; Sell SA Biomed Mater; 2017 Mar; 12(2):025005. PubMed ID: 28145891 [TBL] [Abstract][Full Text] [Related]
29. Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol in Acidic Media. Bratskaya S; Privar Y; Nesterov D; Modin E; Kodess M; Slobodyuk A; Marinin D; Pestov A Biomacromolecules; 2019 Apr; 20(4):1635-1643. PubMed ID: 30726063 [TBL] [Abstract][Full Text] [Related]
30. Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Popov S; Paderin N; Khramova D; Kvashninova E; Patova O; Vityazev F Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328806 [TBL] [Abstract][Full Text] [Related]
31. Shape-Memory-Reduced Graphene/Chitosan Cryogels for Non-Compressible Wounds. Xuan H; Du Q; Li R; Shen X; Zhou J; Li B; Jin Y; Yuan H Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674906 [TBL] [Abstract][Full Text] [Related]
33. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Coimbra P; Ferreira P; de Sousa HC; Batista P; Rodrigues MA; Correia IJ; Gil MH Int J Biol Macromol; 2011 Jan; 48(1):112-8. PubMed ID: 20955729 [TBL] [Abstract][Full Text] [Related]
34. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Savina IN; Zoughaib M; Yergeshov AA Gels; 2021 Jun; 7(3):. PubMed ID: 34203439 [TBL] [Abstract][Full Text] [Related]
35. Macroporous zwitterionic composite cryogel based on chitosan oligosaccharide for antifungal application. Dong P; Shu X; Peng R; Lu S; Xie X; Shi Q Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112327. PubMed ID: 34474878 [TBL] [Abstract][Full Text] [Related]
36. Cellulose Cryogels as Promising Materials for Biomedical Applications. Tyshkunova IV; Poshina DN; Skorik YA Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216150 [TBL] [Abstract][Full Text] [Related]
37. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility. Kemençe N; Bölgen N J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022 [TBL] [Abstract][Full Text] [Related]
38. Differential anti-inflammatory properties of chitosan-based cryogel scaffolds depending on chitosan/gelatin ratio. Ayaz F; Demir D; Bölgen N Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):682-690. PubMed ID: 34894912 [TBL] [Abstract][Full Text] [Related]
39. A hierarchically porous composite monolith polypyrrole/octadecyl silica/graphene oxide/chitosan cryogel sorbent for the extraction and pre-concentration of carbamate pesticides in fruit juices. Klongklaew P; Naksena T; Kanatharana P; Bunkoed O Anal Bioanal Chem; 2018 Nov; 410(27):7185-7193. PubMed ID: 30167743 [TBL] [Abstract][Full Text] [Related]
40. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration. Salgado CL; Grenho L; Fernandes MH; Colaço BJ; Monteiro FJ J Biomed Mater Res A; 2016 Jan; 104(1):57-70. PubMed ID: 26179958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]