BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27750402)

  • 1. Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds.
    Mesquita-Guimarães J; Leite MA; Souza JC; Henriques B; Silva FS; Hotza D; Boccaccini AR; Fredel MC
    J Biomed Mater Res A; 2017 Feb; 105(2):590-600. PubMed ID: 27750402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges.
    Boccardi E; Philippart A; Melli V; Altomare L; De Nardo L; Novajra G; Vitale-Brovarone C; Fey T; Boccaccini AR
    Ann Biomed Eng; 2016 Jun; 44(6):1881-93. PubMed ID: 27034242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of TiO
    Shafaghi R; Rodriguez O; Phull S; Schemitsch EH; Zalzal P; Waldman SD; Papini M; Towler MR
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110351. PubMed ID: 31761236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
    Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B
    J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix.
    Aguiar VCPF; Bezerra RDN; Dos Santos KW; Gonçalves IDS; Costa KJSG; Lauda DP; Campos TMB; do Prado RF; de Vasconcellos LMR; de Oliveira IR
    J Biomater Sci Polym Ed; 2024 Jul; 35(10):1493-1510. PubMed ID: 38569077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of alginate coating on the mechanical and biological properties of 58S bioactive glass scaffolds.
    Keshavarz M; Alizadeh P
    Int J Biol Macromol; 2021 Jan; 167():947-961. PubMed ID: 33186647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds.
    Tiainen H; Eder G; Nilsen O; Haugen HJ
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1386-93. PubMed ID: 24364936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-porous titanium oxide scaffold with high compressive strength.
    Tiainen H; Lyngstadaas SP; Ellingsen JE; Haugen HJ
    J Mater Sci Mater Med; 2010 Oct; 21(10):2783-92. PubMed ID: 20711636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible porous titanium scaffolds produced using a novel space holder technique.
    Chen Y; Frith JE; Dehghan-Manshadi A; Kent D; Bermingham M; Dargusch M
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2796-2806. PubMed ID: 29405558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.
    Shuai C; Huang W; Feng P; Gao C; Shuai X; Xiao T; Deng Y; Peng S; Wu P
    J Biomater Sci Polym Ed; 2016; 27(1):97-109. PubMed ID: 26592544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.
    Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M
    J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
    Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z
    Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles.
    Novajra G; Boetti NG; Lousteau J; Fiorilli S; Milanese D; Vitale-Brovarone C
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():570-580. PubMed ID: 27287156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robocasting of Cu
    Ben-Arfa BAE; Neto S; Miranda Salvado IM; Pullar RC; Ferreira JMF
    Acta Biomater; 2019 Mar; 87():265-272. PubMed ID: 30690209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering.
    Denry I; Goudouri OM; Harless J; Holloway JA
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):291-299. PubMed ID: 28135032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength, toughness, and reliability of a porous glass/biopolymer composite scaffold.
    Fu Q; Jia W; Lau GY; Tomsia AP
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1209-1217. PubMed ID: 28570023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response.
    Liu X; Rahaman MN; Fu Q
    Acta Biomater; 2011 Jan; 7(1):406-16. PubMed ID: 20807594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions.
    Liu X; Rahaman MN; Fu Q; Tomsia AP
    Acta Biomater; 2012 Jan; 8(1):415-23. PubMed ID: 21855661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.