These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27750415)

  • 1. Wiring Bacterial Electron Flow for Sensitive Whole-Cell Amperometric Detection of Riboflavin.
    Si RW; Yang Y; Yu YY; Han S; Zhang CL; Sun DZ; Zhai DD; Liu X; Yong YC
    Anal Chem; 2016 Nov; 88(22):11222-11228. PubMed ID: 27750415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor.
    Yu YY; Wang JX; Si RW; Yang Y; Zhang CL; Yong YC
    Anal Chim Acta; 2017 Sep; 985():148-154. PubMed ID: 28864185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A whole-cell electrochemical biosensing system based on bacterial inward electron flow for fumarate quantification.
    Si RW; Zhai DD; Liao ZH; Gao L; Yong YC
    Biosens Bioelectron; 2015 Jun; 68():34-40. PubMed ID: 25558872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin.
    Yang Y; Yu YY; Wang YZ; Zhang CL; Wang JX; Fang Z; Lv H; Zhong JJ; Yong YC
    Biosens Bioelectron; 2017 Dec; 98():338-344. PubMed ID: 28709085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-Nanohybrid Cell Based Signal Amplification System for Electrochemical Sensing.
    Wang JX; Yang XJ; Wang YZ; Yang K; Chen H; Yong YC
    Anal Chem; 2022 Jun; 94(22):7738-7742. PubMed ID: 35616684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective and sensitive electrochemical device for direct VB
    Kowalczyk A; Sadowska M; Krasnodebska-Ostrega B; Nowicka AM
    Talanta; 2017 Jan; 163():72-77. PubMed ID: 27886772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroanalysis of Shewanella oneidensis MR-1.
    Shumyantseva VV; Shebanova AS; Chalenko YM; Voeikova TA; Kirpichnikov MP; Shaitan KV; Debabov VG
    Dokl Biochem Biophys; 2015; 464():325-8. PubMed ID: 26518560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.
    Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L
    Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant enhancement of electron transfer from Shewanella oneidensis using a porous N-doped carbon cloth in a bioelectrochemical system.
    Yuan HR; Deng LF; Qian X; Wang LF; Li DN; Chen Y; Yuan Y
    Sci Total Environ; 2019 May; 665():882-889. PubMed ID: 30790761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple, Rapid and Selective Chronopotentiometric Method for the Determination of Riboflavin in Pharmaceutical Preparations Using a Glassy Carbon Electrode.
    Brezo T; Stojanovič Z; Suturovič Z; Kravić S; Kos J; Đurović A
    Acta Chim Slov; 2015; 62(4):923-31. PubMed ID: 26680721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrogenerated chemiluminesence method for the determination of riboflavin at an ionic liquid modified gold electrode.
    Qi H; Cao Z; Hou L
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):211-5. PubMed ID: 21030300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes.
    Kane AL; Bond DR; Gralnick JA
    ACS Synth Biol; 2013 Feb; 2(2):93-101. PubMed ID: 23656372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.
    Lu M; Chan S; Babanova S; Bretschger O
    Biotechnol Bioeng; 2017 Jan; 114(1):96-105. PubMed ID: 27399911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.
    Hassan MM; Cheng KY; Ho G; Cord-Ruwisch R
    Biosens Bioelectron; 2017 Jan; 87():531-536. PubMed ID: 27606880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboflavin-rich agar enhances the rate of extracellular electron transfer from electrogenic bacteria inside a thin-layer system.
    Long X; Li WP; Okamoto A
    Bioelectrochemistry; 2022 Dec; 148():108252. PubMed ID: 36081271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors.
    Li R; Tiedje JM; Chiu C; Worden RM
    Environ Sci Technol; 2012 Mar; 46(5):2813-20. PubMed ID: 22324484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection.
    Bailey MR; Pentecost AM; Selimovic A; Martin RS; Schultz ZD
    Anal Chem; 2015 Apr; 87(8):4347-55. PubMed ID: 25815795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a sensitive and selective Riboflavin sensor based on carbon ionic liquid electrode.
    Safavi A; Maleki N; Ershadifar H; Tajabadi F
    Anal Chim Acta; 2010 Aug; 674(2):176-81. PubMed ID: 20678627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soluble electron acceptors affect bioluminescence from Shewanella woodyi.
    Theberge AL; Alsabia SM; Mortensen CT; Blair AG; Wendel NM; Biffinger JC
    Luminescence; 2020 May; 35(3):427-433. PubMed ID: 31828931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.