These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27750422)

  • 1. Enhancing Capillary-Driven Flow for Paper-Based Microfluidic Channels.
    Songok J; Toivakka M
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30523-30530. PubMed ID: 27750422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.
    Songok J; Tuominen M; Teisala H; Haapanen J; Mäkelä J; Kuusipalo J; Toivakka M
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20060-6. PubMed ID: 25336235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching.
    Kalish B; Tan MK; Tsutsui H
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32823829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow Manipulation in Thread-Based Microfluidics by Tuning the Wettability of Wool.
    Jeon SH; Hwang KH; Jung WS; Seo HJ; Nam SW; Boo JH; Yun SH
    J Biomed Nanotechnol; 2015 Feb; 11(2):319-24. PubMed ID: 26349307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization and control of capillary flows in rectangular microchannel with spacers.
    Song K; Zhang L; Zhou Z; Huang R; Zheng X
    Biomicrofluidics; 2020 Jul; 14(4):044105. PubMed ID: 32699565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
    Melin J; van der Wijngaart W; Stemme G
    Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks.
    Ramalingam N; Warkiani ME; Ramalingam N; Keshavarzi G; Hao-Bing L; Hai-Qing TG
    Biomed Microdevices; 2016 Aug; 18(4):68. PubMed ID: 27432321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Wax Printing with Hot Embossing for the Design of Geometrically Well-Defined Microfluidic Papers.
    Postulka N; Striegel A; Krauße M; Mager D; Spiehl D; Meckel T; Worgull M; Biesalski M
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4578-4587. PubMed ID: 30582798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow rate limitation in open capillary channel flows.
    Haake D; Rosendahl U; Ohlhoff A; Dreyer ME
    Ann N Y Acad Sci; 2006 Sep; 1077():443-58. PubMed ID: 17124140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow control in a laminate capillary-driven microfluidic device.
    Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS
    Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet Pattern-Guided Liquid Templates on Superhydrophobic Substrates for Rapid Prototyping of Microfluidic Devices.
    Lai X; Pu Z; Yu H; Li D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1817-1824. PubMed ID: 31804059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermocapillarity in Microfluidics-A Review.
    Karbalaei A; Kumar R; Cho HJ
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottom-up fabrication of paper-based microchips by blade coating of cellulose microfibers on a patterned surface.
    Gao B; Liu H; Gu Z
    Langmuir; 2014 Dec; 30(50):15041-6. PubMed ID: 25474203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Devices Containing ZnO Nanorods with Tunable Surface Chemistry and Wetting-Independent Water Mobility.
    Hen M; Edri E; Guy O; Avrahami D; Shpaisman H; Gerber D; Sukenik CN
    Langmuir; 2019 Mar; 35(9):3265-3271. PubMed ID: 30726675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution.
    Sun H; Li W; Dong ZZ; Hu C; Leung CH; Ma DL; Ren K
    Biosens Bioelectron; 2018 Jan; 99():361-367. PubMed ID: 28800508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
    Choi M; Na Y; Kim SJ
    Electrophoresis; 2015 Dec; 36(23):2896-901. PubMed ID: 26382942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.